The objective of this study was to ascertain the extent changes have occurred in the epidemiology of human rotavirus electropherotypes from the same location 7 to 8 years after an earlier study. Genomic RNA profiles of rotaviruses from diarrhoeic children admitted to the Kuala Lumpur Hospital from April to December 1996 were determined by polyacrylamide gel electrophoresis and silver staining. A total of 179 group A rotaviruses were detected from 870 children: 175 with legible staining of all RNA segments were classified into 14 distinct electropherotypes (10 and 4 with long and short migration patterns respectively). In addition, the results revealed: high predominance of long pattern electropherotypes (94% of the total electropherotypes); most long electropherotypes with RNA profiles which all 11 RNAs migrated separately (8 of 10 electropherotypes); all short electropherotypes had segments 2 and 3 that co-migrated; presence of a very numerically dominant electropherotype (75% of all electropherotypes); frequent co-circulation of the dominant electropherotype-present throughout the study period--with other electropherotypes present for limited periods; sequential temporal appearances by similar electropherotypes. These observations were similar to that of an earlier study conducted in 1988/89. Nevertheless, the dominant electropherotype in the present study was different and not among the electropherotypes detected in the earlier study.
Globally, rotaviral vaccines in use today have contributed to the reduction of the incidence of rotaviral diarrhoeas. Despite the substantial protection conferred by the current vaccines against the rotaviral strains, it is only prudent to recognise that other protective factors, like breastfeeding, also provide some degree of protection against this disease. This article has attempted to review some important mechanisms of protection in breast milk against the rotaviruses and highlight the oft forgotten non-immunoglobulin fraction in breast milk as an additional tool of protection against rotavirus disease. The adaptive capacity of breast milk to environment is another compelling reason to continue breastfeeding as it can usefully complement and be significant in the use of many vaccines. Vital immunoprotective constituents in breast milk beneficially protect the infant by initiating and strengthening many immune responses and should be borne in mind as essential tools of defence even in an era where vaccines play a pivotal role in the combat against certain diseases. It is impressive that besides nutritive advantages, the suckling infant enjoys appreciable immunoprotection via exclusive breastfeeding.