Displaying all 2 publications

Abstract:
Sort:
  1. Vignesvaran K, Alias Z
    Arch Insect Biochem Physiol, 2016 Jul;92(3):210-21.
    PMID: 27075600 DOI: 10.1002/arch.21332
    Drosophila melanogaster glutathione S-transferase D3 (DmGSTD3) has a shorter amino acid sequence as compared to other GSTs known in the fruit flies. This is due to the 15 amino acid N-terminal truncation in which normally active amino acid residue is located. The work has made use of homology modeling to visualize the arrangement of amino acid side chains in the glutathione (GSH) substrate cavity. The identified amino acids were then replaced with amino acids without functional groups in the side chains and the mutants were analyzed kinetically. Homology modeling revealed that the side chains of Y89 and Y97 were shown facing toward the substrate cavity proposing their possible role in catalyzing the conjugation. Y97A and Y89A GSH gave large changes in Km (twofold increase), Vmax (fivefold reduction), and Kcat /Km values for GSH suggesting their significant role in the conjugation reaction. The replacement at either positions has not affected the affinity of the enzyme toward 1-chloro-2,4-dinitrobenzene as no significant change in values of Kmax was observed. The replacement, however, had significantly reduced the catalytic efficiency of both mutants with (Kcat /Km )(GSH) and (Kcat /Km )(CDNB) of eight- and twofold reduction. The recombinant DmGSTD3 has shown no activity toward 1,2-dichloro-4-nitrobenzene, 2,4-hexadienal, 2,4-heptadienal, p-nitrobenzyl chloride, ethacrynic acid, and sulfobromophthalein. Therefore, it was evident that DmGSTD3 has made use of distal amino acids Y97 and Y89 for GSH conjugation.
    Matched MeSH terms: Drosophila melanogaster/enzymology
  2. Woo WK, Dzaki N, Thangadurai S, Azzam G
    Sci Rep, 2019 Apr 15;9(1):6096.
    PMID: 30988367 DOI: 10.1038/s41598-019-42369-6
    CTP synthase (CTPSyn) is an essential metabolic enzyme, synthesizing precursors required for nucleotides and phospholipids production. Previous studies have also shown that CTPSyn is elevated in various cancers. In many organisms, CTPSyn compartmentalizes into filaments called cytoophidia. In Drosophila melanogaster, only its isoform C (CTPSynIsoC) forms cytoophidia. In the fruit fly's testis, cytoophidia are normally seen in the transit amplification regions close to its apical tip, where the stem-cell niche is located, and development is at its most rapid. Here, we report that CTPSynIsoC overexpression causes the lengthening of cytoophidia throughout the entirety of the testicular body. A bulging apical tip is found in approximately 34% of males overexpressing CTPSynIsoC. Immunostaining shows that this bulged phenotype is most likely due to increased numbers of both germline cells and spermatocytes. Through a microRNA (miRNA) overexpression screen, we found that ectopic miR-975 concurrently increases both the expression levels of CTPSyn and the length of its cytoophidia. The bulging testes phenotype was also recovered at a penetration of approximately 20%. However, qPCR assays reveal that CTPSynIsoC and miR-975 overexpression each provokes a differential response in expression of a number of cancer-related genes, indicating that the shared CTPSyn upregulation seen in either case is likely the cause of observed testicular overgrowth. This study presents the first instance of consequences of miRNA-asserted regulation upon CTPSyn in D. melanogaster, and further reaffirms the enzyme's close ties to germline cells overgrowth.
    Matched MeSH terms: Drosophila melanogaster/enzymology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links