Imbalance within the resident bacterial community (dysbiosis), rather than the presence and activity of a single organism, has been proposed to be associated with, and to influence, the development and progression of various diseases; however, the existence and significance of dysbiosis in oral/oropharyngeal cancer is yet to be clearly established. A systematic search (conducted on 25/01/2018 and updated on 25/05/2018) was performed on three databases (Pubmed, Web of Science & Scopus) to identify studies employing culture-independent methods which investigated the bacterial community in oral/oropharyngeal cancer patients compared to control subjects. Of the 1546 texts screened, only fifteen publications met the pre-determined selection criteria. Data extracted from 731 cases and 809 controls overall, could not identify consistent enrichment of any particular taxon in oral/oropharyngeal cancers, although common taxa could be identified between studies. Six studies reported the enrichment of Fusobacteria in cancer at different taxonomic levels whereas four studies reported an increase in Parvimonas. Changes in microbial diversity remained inconclusive, with four studies showing a higher diversity in controls, three studies showing a higher diversity in tumors and three additional studies showing no difference between tumors and controls. Even though most studies identified a component of dysbiosis in oral/oropharyngeal cancer, methodological and analytical variations prevented a standardized summary, which highlights the necessity for studies of superior quality and magnitude employing standardized methodology and reporting. Indeed an holistic metagenomic approach is likely to be more meaningful, as is understanding of the overall metabolome, rather than a mere enumeration of the organisms present.
Dysbiosis of the gut microbiome has been associated with the pathogenesis of colorectal cancer (CRC). We profiled the microbiome of gut mucosal tissues from 18 CRC patients and 18 non-CRC controls of the UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia. The results were then validated using a species-specific quantitative PCR in 40 CRC and 20 non-CRC tissues samples from the UMBI-UKMMC Biobank. Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus stomatis and Akkermansia muciniphila were found to be over-represented in our CRC patients compared to non-CRC controls. These four bacteria markers distinguished CRC from controls (AUROC = 0.925) in our validation cohort. We identified bacteria species significantly associated (cut-off value of > 5 fold abundance) with various CRC demographics such as ethnicity, gender and CRC staging; however, due to small sample size of the discovery cohort, these results could not be further verified in our validation cohort. In summary, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus stomatis and Akkermansia muciniphila were enriched in our local CRC patients. Nevertheless, the roles of these bacteria in CRC initiation and progression remains to be investigated.