METHODS: Information was obtained from published records, responses from various questionnaires, personal communication and involvement with curricular development.
RESULTS: Curricular innovations tended to be implemented in new medical schools upon their establishment. Established medical schools seemed to implement these innovations much later. Curricular trends appear to move towards integration, student-centred and problem-based learning as well as community-oriented medical education, with the Student-centred learning, Problem-based learning, Integrated teaching, Community-based education, Electives and Systematic programme (SPICES) model used as a reference. The focus is based on the premise that although the short-term aim of undergraduate medical education in Malaysia is to prepare graduates for the pre-registration house officer year, they must be able to practise and make decisions independently and be sensitive to the needs of the country's multiracial, multi-religious, and often remote communities.
CONCLUSION: In most cases, curricular planning starts with a prescriptive model where planners focus on several intended outcomes. However, as the plan is implemented and evaluated it becomes descriptive as the planners reassess the internal and external factors that affect outcomes. A common trend in community-oriented educational activities is evident, with the introduction of interesting variations, to ensure that the curriculum can be implemented, sustained and the intended outcomes achieved.
METHODS AND ANALYSIS: Scopus, CINAHL, Academic Search Complete, Cochrane Library, MEDLINE and Psychology and Behavioral Sciences Collection databases were selected. Screening was conducted independently by at least two authors and the decision for inclusion was done through discussion or involvement of an arbiter against a predetermined criteria. Included articles will be evaluated for quality using A MeaSurement Tool to Assess systematic Reviews and Risk of Bias in Systematic Review tools, while primary systematic review articles will be cross-checked and reported for any overlapping using the 'corrected covered area' method. Only narrative synthesis will be employed according to the predefined themes into two major dimensions-theory and knowledge generation (focusing on cognitive taxonomy due to its ability to be generalised across disciplines), and clinical-based competence (focusing on psychomotor and affective taxonomies due to discipline-specific influence). The type of technology used will be identified and extracted.
ETHICS AND DISSEMINATION: The OoSR involves analysis of secondary data from published literature, thus ethical approval is not required. The findings will provide a valuable insight for policymakers, stakeholders, and researchers in terms of technology-based learning implementation and gaps identification. The findings will be published in several reports due to the extensiveness of the topic and will be disseminated through peer-reviewed publications and conferences.
PROSPERO REGISTRATION NUMBER: CRD4202017974.
METHODS: Data for this study were obtained from final year medical students' exit examination (n=185). Retrospective analysis of data was conducted using SPSS. Means for the six CSs assessed across the 16 stations were computed and compared.
RESULTS: Means for history taking, physical examination, communication skills, clinical reasoning skills (CRSs), procedural skills (PSs), and professionalism were 6.25±1.29, 6.39±1.36, 6.34±0.98, 5.86±0.99, 6.59±1.08, and 6.28±1.02, respectively. Repeated measures ANOVA showed there was a significant difference in the means of the six CSs assessed [F(2.980, 548.332)=20.253, p<0.001]. Pairwise multiple comparisons revealed significant differences between the means of the eight pairs of CSs assessed, at p<0.05.
CONCLUSIONS: CRSs appeared to be the weakest while PSs were the strongest, among the six CSs assessed. Students' unsatisfactory performance in CRS needs to be addressed as CRS is one of the core competencies in medical education and a critical skill to be acquired by medical students before entering the workplace. Despite its challenges, students must learn the skills of clinical reasoning, while clinical teachers should facilitate the clinical reasoning process and guide students' clinical reasoning development.
MATERIALS AND METHODS: A survey of the tutors who had used the instrument was conducted to determine whether the assessment instrument or form was user-friendly. The 4 competencies assessed, using a 5-point rating scale, were (1) participation and communication skills, (2) cooperation or team-building skills, (3) comprehension or reasoning skills and (4) knowledge or information-gathering skills. Tutors were given a set of criteria guidelines for scoring the students' performance in these 4 competencies. Tutors were not attached to a particular PBL group, but took turns to facilitate different groups on different case or problem discussions. Assessment scores for one cohort of undergraduate medical students in their respective PBL groups in Year I (2003/2004) and Year II (2004/2005) were analysed. The consistency of scores was analysed using intraclass correlation.
RESULTS: The majority of the tutors surveyed expressed no difficulty in using the instrument and agreed that it helped them assess the students fairly. Analysis of the scores obtained for the above cohort indicated that the different raters were relatively consistent in their assessment of student performance, despite a small number consistently showing either "strict" or "indiscriminate" rating practice.
CONCLUSION: The instrument designed for the assessment of student performance in the PBL tutorial classroom setting is user-friendly and is reliable when used judiciously with the criteria guidelines provided.