In this study, the complete mitogenome sequence of two moray eels of Gymnothorax formosus and Scuticaria tigrina (Anguilliformes: Muraenidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, with the length of 16,558 bp for G. formosus and 16,521 bp for S. tigrina, shows 78% identity to each other. Both mitogenomes follow the typical vertebrate arrangement, including 13 protein coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. The length of D-loop is 927 bp (G. formosus) and 850 bp (S. tigrina), which is located between tRNA-Pro and tRNA-Phe. The overall GC content is 45.5% for G. formosus and 47.9% for S. tigrina. Complete mitogenomes of G. formosus and S. tigrina provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for moray eel.
In this study, the complete mitogenome sequence of the longfang moray, Enchelynassa canina (Anguilliformes: Muraenidae) has been sequenced by the next-generation sequencing method. The length of the assembled mitogenome is 16,592 bp, which includes 13 protein coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of longfang moray is 28.4% for A, 28.0% for C, 18.4% for G, 25.1% for T, and show 82% identities to Kidako moray, Gymnothorax kidako. The complete mitogenome of the longfang moray provides an essential and important DNA molecular data for further phylogeography and evolutionary analysis for moray eel phylogeny.