Displaying all 2 publications

Abstract:
Sort:
  1. Pramanik A, Basak AK, Littlefair G, Debnath S, Prakash C, Singh MA, et al.
    Heliyon, 2020 Dec;6(12):e05554.
    PMID: 33344787 DOI: 10.1016/j.heliyon.2020.e05554
    Titanium alloys are difficult to machine using conventional methods, therefore, nonconventional processes are often chosen in many applications. Electrical discharge machining (EDM) is one of those nonconventional processes that is used frequently for shaping titanium alloys with their respective pros and cons. However, a good understanding of this process is very difficult to achieve as research results are not properly connected and presented. Therefore, this study investigates different types of EDM processes such as, wire EDM, die-sink EDM, EDM drill and hybrid EDM used to machine titanium alloys. Machining mechanism, tool electrode, dielectric, materials removal rate (MRR), and surface integrity of all these processes are critically analysed and correlated based on the evidence accessible in literature. Machining process suffer from lower material removal rate and high tool wear while applied on titanium alloys. Formation of recast layer, heat affected zone and tool wear is common in all types of EDM processes. Additional challenge in wire EDM of titanium alloys is wire breakage under severe machining conditions. The formation of TiC and TiO2 are noticed in recast layer depending on the type of dielectrics. Removal of debris from small holes during EDM drilling is a challenge. All these restricts the applications EDMed titanium alloys in high-tech applications such as, aerospace and biomedical areas. Most of these challenges come up due to extraordinary properties such as, low thermal conductivity, high melting point and high hardness, of titanium alloys. Though hybrid EDM has been introduced and there is some work on simulation of EDM process, further developments in EDM of this alloy is required for widening the application of this methods.
    Matched MeSH terms: Electric Wiring
  2. Kafi AKM, Naqshabandi M, Yusoff MM, Crossley MJ
    Enzyme Microb Technol, 2018 Jun;113:67-74.
    PMID: 29602389 DOI: 10.1016/j.enzmictec.2017.11.006
    A new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface has been described in order to build up the effective electrical wiring of the enzyme units with the electrode. The synthesized 3D HRP/CNT network has been characterized with cyclic voltammetry and amperometry which results the establishment of direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the high biological activity and stability is exhibited by the immobilized HRP and a quasi-reversible redox peak of the redox centre of HRP was observed at about -0.355 and -0.275V vs. Ag/AgCl. The electron transfer rate constant, KSand electron transfer co-efficient α were found as 0.57s-1and 0.42, respectively. Excellent electrocatalytic activity for the reduction of H2O2was exhibited by the developed biosensor. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2determination. The linear range is from 1.0×10-7to 1.2×10-4M with a detection limit of 2.2.0×10-8M at 3σ. The Michaelies-Menten constant Kapp M value is estimated to be 0.19mM. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability.
    Matched MeSH terms: Electric Wiring
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links