Displaying all 5 publications

Abstract:
Sort:
  1. Aziz F, Arof H, Mokhtar N, Mubin M
    J Neural Eng, 2014 Oct;11(5):056018.
    PMID: 25188730 DOI: 10.1088/1741-2560/11/5/056018
    This paper presents a wheelchair navigation system based on a hidden Markov model (HMM), which we developed to assist those with restricted mobility. The semi-autonomous system is equipped with obstacle/collision avoidance sensors and it takes the electrooculography (EOG) signal traces from the user as commands to maneuver the wheelchair. The EOG traces originate from eyeball and eyelid movements and they are embedded in EEG signals collected from the scalp of the user at three different locations. Features extracted from the EOG traces are used to determine whether the eyes are open or closed, and whether the eyes are gazing to the right, center, or left. These features are utilized as inputs to a few support vector machine (SVM) classifiers, whose outputs are regarded as observations to an HMM. The HMM determines the state of the system and generates commands for navigating the wheelchair accordingly. The use of simple features and the implementation of a sliding window that captures important signatures in the EOG traces result in a fast execution time and high classification rates. The wheelchair is equipped with a proximity sensor and it can move forward and backward in three directions. The asynchronous system achieved an average classification rate of 98% when tested with online data while its average execution time was less than 1 s. It was also tested in a navigation experiment where all of the participants managed to complete the tasks successfully without collisions.
    Matched MeSH terms: Electrooculography/methods*
  2. Yildirim O, Baloglu UB, Acharya UR
    PMID: 30791379 DOI: 10.3390/ijerph16040599
    Sleep disorder is a symptom of many neurological diseases that may significantly affect the quality of daily life. Traditional methods are time-consuming and involve the manual scoring of polysomnogram (PSG) signals obtained in a laboratory environment. However, the automated monitoring of sleep stages can help detect neurological disorders accurately as well. In this study, a flexible deep learning model is proposed using raw PSG signals. A one-dimensional convolutional neural network (1D-CNN) is developed using electroencephalogram (EEG) and electrooculogram (EOG) signals for the classification of sleep stages. The performance of the system is evaluated using two public databases (sleep-edf and sleep-edfx). The developed model yielded the highest accuracies of 98.06%, 94.64%, 92.36%, 91.22%, and 91.00% for two to six sleep classes, respectively, using the sleep-edf database. Further, the proposed model obtained the highest accuracies of 97.62%, 94.34%, 92.33%, 90.98%, and 89.54%, respectively for the same two to six sleep classes using the sleep-edfx dataset. The developed deep learning model is ready for clinical usage, and can be tested with big PSG data.
    Matched MeSH terms: Electrooculography
  3. Faust O, Razaghi H, Barika R, Ciaccio EJ, Acharya UR
    Comput Methods Programs Biomed, 2019 Jul;176:81-91.
    PMID: 31200914 DOI: 10.1016/j.cmpb.2019.04.032
    BACKGROUND AND OBJECTIVE: Sleep is an important part of our life. That importance is highlighted by the multitude of health problems which result from sleep disorders. Detecting these sleep disorders requires an accurate interpretation of physiological signals. Prerequisite for this interpretation is an understanding of the way in which sleep stage changes manifest themselves in the signal waveform. With that understanding it is possible to build automated sleep stage scoring systems. Apart from their practical relevance for automating sleep disorder diagnosis, these systems provide a good indication of the amount of sleep stage related information communicated by a specific physiological signal.

    METHODS: This article provides a comprehensive review of automated sleep stage scoring systems, which were created since the year 2000. The systems were developed for Electrocardiogram (ECG), Electroencephalogram (EEG), Electrooculogram (EOG), and a combination of signals.

    RESULTS: Our review shows that all of these signals contain information for sleep stage scoring.

    CONCLUSIONS: The result is important, because it allows us to shift our research focus away from information extraction methods to systemic improvements, such as patient comfort, redundancy, safety and cost.

    Matched MeSH terms: Electrooculography
  4. Petre-Quadens O, Hussain H, Balaratnan C
    Acta Neurol Belg, 1975 Mar;75(2):85-92.
    PMID: 168717
    The Temiars are a tribe of negroid pygmies of basically Proto-Malaysian affinities. Field-work in the Malaysian jungle provided some observations on the sleep-wakefulness cycle of two young Temiar adults. This cycle was monophasic circumstances permitting. Their rest-activity cycle at night was similar in the jungle and in the laboratory. Polygraphic total night-sleep recordings were made with both of them in the EEG laboratory in the Hospital Besar in Kuala Lumpur. The eye-movement frequencies of PS were compared with those from young adults of the West. Although the differences were not statistically significant, the Rem-densities of the Temiars were constantly at the low side. The significance of the results are being discussed.
    Matched MeSH terms: Electrooculography
  5. Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR
    Comput Methods Programs Biomed, 2018 Jul;161:1-13.
    PMID: 29852952 DOI: 10.1016/j.cmpb.2018.04.005
    BACKGROUND AND OBJECTIVE: We have cast the net into the ocean of knowledge to retrieve the latest scientific research on deep learning methods for physiological signals. We found 53 research papers on this topic, published from 01.01.2008 to 31.12.2017.

    METHODS: An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram(EMG), Electroencephalogram(EEG), Electrocardiogram(ECG), and Electrooculogram(EOG). These four categories were used to structure the subsequent content review.

    RESULTS: During the content review, we understood that deep learning performs better for big and varied datasets than classic analysis and machine classification methods. Deep learning algorithms try to develop the model by using all the available input.

    CONCLUSIONS: This review paper depicts the application of various deep learning algorithms used till recently, but in future it will be used for more healthcare areas to improve the quality of diagnosis.

    Matched MeSH terms: Electrooculography
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links