The lymphatic filarial parasites which affect about 90 million people worldwide have similar host-parasite relationships in man. They are all able to survive, reproduce and cause chronic infections if they can successfully evade the protective responses of the host. Studies to investigate the wide spectrum of clinical manifestations of the infection even among those living in similar endemic areas and with presumed equal exposure to infective larvae, have been hampered by the lack of animal models showing similar host-parasite responses. The recent use of the nude mouse infected with Brugia spp, and the leaf-monkey (Presbytis spp) infected with B. malayi or Wuchereria spp for the study of immune responses and the associated pathology of these infections, has elucidated some of the host protective immune responses as well as the associated immunopathological reactions. The successfully entrenched parasite elicits minimal reactions and pathology, but with the onset of effective host responses, whether assisted by chemotherapy, development of protective immunity or both, severe inflammatory responses may occur. The role of such immune mediated response in determining subsequent pathology will probably be dependent on the frequency and duration of these episodes, but these have yet to be defined. Prenatal and perinatal sensitization by filarial antigens are postulated to result in tolerance and/or modification of immune responses to subsequent infections. A role for genetic predisposition to certain clinical outcomes, for example, the development of elephantiasis, has been postulated but needs further study. Advances have also been achieved in defining those parasite antigens/products involved in eliciting or suppressing protective and other immune responses.(ABSTRACT TRUNCATED AT 250 WORDS)
The Presbytis cristata--Brugia malayi model, now established as a reliable non-human primate model for the experimental screening of potential filaricides, was monitored at monthly intervals for changes in the liver and renal function tests and also for alkaline phosphatase levels during infection. Animals infected with 200-400 infective larvae became patient at 50-90 days post-infection and geometric mean microfilarial counts were above 1000 per ml from the fourth month onwards. There were no significant changes in the biochemical parameters monitored throughout the period of observation. This is an important observation as any changes seen in these parameters during experimental drug studies can be attributed to drug reaction or toxicity and this will be invaluable in decision making as to drug safety.