The complete nucleotide sequences are reported of two strains of echovirus 7, the prototype Wallace strain (Eo7-Wallace) and a recent Malaysian strain isolated from the cerebrospinal fluid of a child with fatal encephalomyelitis (Eo7-UMMC strain). The molecular findings corroborate the serological placement of the UMMC strain as echovirus 7. Both Eo7-Wallace and Eo7-UMMC belong to the species human enterovirus B and are most closely related to echovirus 11. Eo7-UMMC has undergone significant genetic drift from the prototype strain in the 47 years that separate the isolation of the two viruses. Phylogenetic analysis revealed that Eo7-UMMC did not arise from recombination with another enterovirus serotype. The molecular basis for the severely neurovirulent phenotype of Eo7-UMMC remains unknown. However, it is shown that mutations in the nucleotide sequence of the 5' untranslated region (UTR) of Eo7-UMMC result in changes to the putative structure of the 5' UTR. It is possible that these changes contribute to the neurovirulence of Eo7-UMMC.
A specific and sensitive method based on RT-PCR was developed to detect enterovirus 71 (EV71) from patients with hand, foot and mouth disease, myocarditis, aseptic meningitis and acute flaccid paralysis. RT-PCR primers from conserved parts of the VP1 capsid gene were designed on the basis of good correlation with sequences of EV71 strains. These primers successfully amplified 44 strains of EV71 including 34 strains isolated from Singapore in 1997 and 1998, eight strains from Malaysia isolated in 1997 and 1998, one Japanese strain and the neurovirulent strain EV71/7423/MS/87. RT-PCR of 30 strains of other enteroviruses including coxsackievirus A and B, and echoviruses failed to give any positive amplicons. Hence, RT-PCR with these primers showed 100% correlation with serotyping. Direct sequencing of the RT-PCR products of 20 EV71 strains revealed a distinct cluster with two major subgroups, thus enabling genetic typing of the viruses. The genetic heterogeneity of these strains culminated in amino acid substitutions within the VP1, VP2 and VP3 regions. The sequencing of a 2.9 kb fragment comprising the capsid region and the major part of 5' UTR of two Singapore strains revealed that they belonged to a group distinct from the prototype EV71/BrCr strain and the EV71/7423/MS/87 strain. The dendrogram generated from 341 bp fragments within the VP1 region revealed that the strains of Singapore, Malaysia and Taiwan belong to two entirely different EV71 genogroups, distinct from the three genogroups identified in another recent study.