Coronavirus disease 2019 (COVID-19), a recent viral pandemic that first began in December 2019, in Hunan wildlife market, Wuhan, China. The infection is caused by a coronavirus, SARS-CoV-2 and clinically characterized by common symptoms including fever, dry cough, loss of taste/smell, myalgia and pneumonia in severe cases. With overwhelming spikes in infection and death, its pathogenesis yet remains elusive. Since the infection spread rapidly, its healthcare demands are overwhelming with uncontrollable emergencies. Although laboratory testing and analysis are developing at an enormous pace, the high momentum of severe cases demand more rapid strategies for initial screening and patient stratification. Several molecular biomarkers like C-reactive protein, interleukin-6 (IL6), eosinophils and cytokines, and artificial intelligence (AI) based screening approaches have been developed by various studies to assist this vast medical demand. This review is an attempt to collate the outcomes of such studies, thus highlighting the utility of AI in rapid screening of molecular markers along with chest X-rays and other COVID-19 symptoms to enable faster diagnosis and patient stratification. By doing so, we also found that molecular markers such as C-reactive protein, IL-6 eosinophils, etc. showed significant differences between severe and non-severe cases of COVID-19 patients. CT findings in the lungs also showed different patterns like lung consolidation significantly higher in patients with poor recovery and lung lesions and fibrosis being higher in patients with good recovery. Thus, from these evidences we perceive that an initial rapid screening using integrated AI approach could be a way forward in efficient patient stratification.
An enzyme-linked immunosorbent assay using excretory-secretory antigens of the second stage larvae maintained in vitro was used to determine the seroprevalence of Toxocara antibodies in Orang Asli (aborigines) of Peninsular Malaysia. The mean + 3 SD optical density of 30 healthy subjects was used as the cut-off point. Overall prevalence was found to be 31.9%. No significant relationship was found between positive rates with sex and age groups, though children between 0 to 9 years recorded the highest positive rates. Eosinophil counts were found to be closely related to the proportion of positivity to toxocaral infection and mean optical densities. There was some degree of cross-reaction with Trichuris trichuria positive sera.
Synchrotron microbeam radiation treatment (MRT) is a preclinical radiotherapy technique with considerable clinical promise, although some of the underlying radiobiology of MRT is still not well understood. In recently reported studies, it has been suggested that MRT elicits a different tumor immune profile compared to broad-beam treatment (BB). The aim of this study was to investigate the effects of synchrotron MRT and BB on eosinophil-associated gene pathways and eosinophil numbers within and around the tumor in the acute stage, 48 h postirradiation. Balb/C mice were inoculated with EMT6.5 mouse mammary tumors and irradiated with microbeam radiation (112 and 560 Gy) and broad-beam radiation (5 and 9 Gy) at equivalent doses determined from a previous in vitro study. After tumors were collected 24 and 48 h postirradiation, RNA was extracted and quantitative PCR performed to assess eosinophil-associated gene expression. Immunohistochemistry was performed to detect two known markers of eosinophils: eosinophil-associated ribonucleases (EARs) and eosinophil major basic protein (MBP). We identified five genes associated with eosinophil function and recruitment (Ear11, Ccl24, Ccl6, Ccl9 and Ccl11) and all of them, except Ccl11, were differentially regulated in synchrotron microbeam-irradiated tumors compared to broad-beam-irradiated tumors. However, immunohistochemical localization demonstrated no significant differences in the number of EAR- and MBP-positive eosinophils infiltrating the primary tumor after MRT compared to BB. In conclusion, our work demonstrates that the effects of MRT on eosinophil-related gene pathways are different from broad-beam radiation treatment at doses previously demonstrated to be equivalent in an in vitro study. However, a comparison of the microenvironments of tumors, which received MRT and BB, 48 h after exposure showed no difference between them with respect to eosinophil accumulation. These findings contribute to our understanding of the role of differential effects of MRT on the tumor immune response.