Displaying all 3 publications

Abstract:
Sort:
  1. Lee LY, Hew GSY, Mehta M, Shukla SD, Satija S, Khurana N, et al.
    Life Sci, 2021 Feb 15;267:118973.
    PMID: 33400932 DOI: 10.1016/j.lfs.2020.118973
    Eosinophils are bi-lobed, multi-functional innate immune cells with diverse cell surface receptors that regulate local immune and inflammatory responses. Several inflammatory and infectious diseases are triggered with their build up in the blood and tissues. The mobilization of eosinophils into the lungs is regulated by a cascade of processes guided by Th2 cytokine generating T-cells. Recruitment of eosinophils essentially leads to a characteristic immune response followed by airway hyperresponsiveness and remodeling, which are hallmarks of chronic respiratory diseases. By analysing the dynamic interactions of eosinophils with their extracellular environment, which also involve signaling molecules and tissues, various therapies have been invented and developed to target respiratory diseases. Having entered clinical testing, several eosinophil targeting therapeutic agents have shown much promise and have further bridged the gap between theory and practice. Moreover, researchers now have a clearer understanding of the roles and mechanisms of eosinophils. These factors have successfully assisted molecular biologists to block specific pathways in the growth, migration and activation of eosinophils. The primary purpose of this review is to provide an overview of the eosinophil biology with a special emphasis on potential pharmacotherapeutic targets. The review also summarizes promising eosinophil-targeting agents, along with their mechanisms and rationale for use, including those in developmental pipeline, in clinical trials, or approved for other respiratory disorders.
    Matched MeSH terms: Eosinophils/metabolism
  2. Tan HT, Hagner S, Ruchti F, Radzikowska U, Tan G, Altunbulakli C, et al.
    Allergy, 2019 02;74(2):294-307.
    PMID: 30267575 DOI: 10.1111/all.13619
    BACKGROUND: Asthma is a chronic respiratory disease with marked clinical and pathophysiological heterogeneity. Specific pathways are thought to be involved in the pathomechanisms of different inflammatory phenotypes of asthma; however, direct in vivo comparison has not been performed.

    METHODS: We developed mouse models representing three different phenotypes of allergic airway inflammation-eosinophilic, mixed, and neutrophilic asthma via different methods of house dust mite sensitization and challenge. Transcriptomic analysis of the lungs, followed by the RT-PCR, western blot, and confocal microscopy, was performed. Primary human bronchial epithelial cells cultured in air-liquid interface were used to study the mechanisms revealed in the in vivo models.

    RESULTS: By whole-genome transcriptome profiling of the lung, we found that airway tight junction (TJ), mucin, and inflammasome-related genes are differentially expressed in these distinct phenotypes. Further analysis of proteins from these families revealed that Zo-1 and Cldn18 were downregulated in all phenotypes, while increased Cldn4 expression was characteristic for neutrophilic airway inflammation. Mucins Clca1 (Gob5) and Muc5ac were upregulated in eosinophilic and even more in neutrophilic phenotype. Increased expression of inflammasome-related molecules such as Nlrp3, Nlrc4, Casp-1, and IL-1β was characteristic for neutrophilic asthma. In addition, we showed that inflammasome/Th17/neutrophilic axis cytokine-IL-1β-may transiently impair epithelial barrier function, while IL-1β and IL-17 increase mucin expressions in primary human bronchial epithelial cells.

    CONCLUSION: Our findings suggest that differential expression of TJ, mucin, and inflammasome-related molecules in distinct inflammatory phenotypes of asthma may be linked to pathophysiology and might reflect the differences observed in the clinic.

    Matched MeSH terms: Eosinophils/metabolism
  3. Esposito DH, Freedman DO, Neumayr A, Parola P
    Euro Surveill, 2012 Nov 08;17(45).
    PMID: 23153473
    As of 4 November, 2012, 100 patients with an acute muscular Sarcocystis-like illness associated with travel to Tioman Island, Malaysia, have been identified. Thirty-five travelled there mostly during July and August 2011 and 65 mostly during July and August 2012, suggesting an ongoing outbreak. Epidemiological investigations are ongoing. Public health agencies and practicing clinicians should be aware of this rarely-reported disease in humans and consider it as differential diagnosis in travellers returning from Tioman Island.
    Matched MeSH terms: Eosinophils/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links