Displaying all 3 publications

Abstract:
Sort:
  1. Yip M, Saripan MI, Wells K, Bradley DA
    PLoS One, 2015;10(9):e0135769.
    PMID: 26348619 DOI: 10.1371/journal.pone.0135769
    Detection of buried improvised explosive devices (IEDs) is a delicate task, leading to a need to develop sensitive stand-off detection technology. The shape, composition and size of the IEDs can be expected to be revised over time in an effort to overcome increasingly sophisticated detection methods. As an example, for the most part, landmines are found through metal detection which has led to increasing use of non-ferrous materials such as wood or plastic containers for chemical based explosives being developed.
    Matched MeSH terms: Explosive Agents/isolation & purification*
  2. Chang KH, Yew CH, Abdullah AF
    J Forensic Sci, 2014 Jul;59(4):1100-8.
    PMID: 24611488 DOI: 10.1111/1556-4029.12440
    Smokeless powders are low explosives and are potentially found in cases involving firearms and improvised explosive devices. Apart from inorganic compound analysis, forensic determination of organic components of these materials appears as a promising alternative, especially the chromatographic techniques. This work describes the optimization of a solid-phase microextraction technique using an 85 μm polyacrylate fiber followed by gas chromatography-flame ionization detection for smokeless powder. A multivariate experimental design was performed to optimize extraction-influencing parameters. A 2(4) factorial first-order design revealed that sample temperature and extraction time were the major influencing parameters. Doehlert matrix design has subsequently selected 66°C and 21 min as the compromised conditions for the two predetermined parameters. This extraction technique has successfully detected the headspace compounds of smokeless powders from different ammunition types and allowed for their differentiation. The novel technique allows more rapid sample preparation for chromatographic detection of smokeless powders.
    Matched MeSH terms: Explosive Agents
  3. Chong CS, Sabir DK, Lorenz A, Bontemps C, Andeer P, Stahl DA, et al.
    Appl Environ Microbiol, 2014 Nov;80(21):6601-10.
    PMID: 25128343 DOI: 10.1128/AEM.01818-14
    Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.
    Matched MeSH terms: Explosive Agents/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links