Displaying all 3 publications

Abstract:
Sort:
  1. Subramani T, Rathnavelu V, Yeap SK, Alitheen NB
    Mediators Inflamm, 2013;2013:275172.
    PMID: 23431239 DOI: 10.1155/2013/275172
    Mast cells (MCs) are multifunctional effector cells that were originally thought to be involved in allergic disorders. Now it is known that they contain an array of mediators with a multitude of effects on many other cells. MCs have become a recent concern in drug-induced gingival overgrowth (DIGO), an unwanted outcome of systemic medication. Most of the studies have confirmed the significant presence of inflammation as a prerequisite for the overgrowth to occur. The inflammatory changes within the gingival tissue appear to influence the interaction between the inducing drug and the fibroblast activity. The development of antibodies to MC-specific enzymes, tryptase and chymase, has facilitated the study of mast cells in DIGO. Many immunohistochemical studies involving MCs have been conducted; as a result, DIGO tissues are found to have increased the number of MCs in the gingiva, especially in the area of fibrosis. At the cellular level, gingival fibrogenesis is initiated by several mediators which induce the recruitment of a large number of inflammatory cells, including MCs. The purpose of this paper is to access the roles played by MCs in gingival overgrowth to hypothesize a relationship between these highly specialized cells in the pathogenesis of DIGO.
    Matched MeSH terms: Fibrosis/immunology
  2. Hudu SA, Niazlin MT, Nordin SA, Saeed MI, Tan SS, Sekawi Z
    Iran J Immunol, 2017 Dec;14(4):281-292.
    PMID: 29276181 DOI: IJIv14i4A3
    BACKGROUND: Hepatitis viruses are non-cytopathic viruses that lead to the infection and pathogenesis of liver diseases as a result of immunologically mediated events.

    OBJECTIVE: To investigate the expression of human inflammatory cytokines in chronic hepatitis B patients according to the severity of the infection.

    METHODS: We recruited a total of 120 patients, 40 of whom from cirrhotic, 40 non-cirrhotic, and 40 acute flare chronic hepatitis B and 40 healthy controls. For all groups total cellular RNA was extracted from whole blood samples, genomic DNA was eliminated, and cDNA was synthesized using the RT2 first strand kit, as instructed by the manufacturer. The real-time profiler PCR array was performed on a master cycler ep realplex and the data were analyzed using an online data analysis software.

    RESULTS: Non-cirrhotic chronic hepatitis B patients were found to significantly upregulate interleukin 10 receptors that regulate the balance between T helpers 1 and 2. On the other hand, patients with cirrhosis were found to have significant upregulated interleukin 3 gene expression.

    CONCLUSION: Our finding suggests that upregulation of anti-inflammatory and downregulation of pro-inflammatory cytokines may play a role in the progression of non-cirrhotic chronic hepatitis B patients to cirrhotic and acute flare. However, a multi-center study with a larger sample size is needed to confirm our findings.

    Matched MeSH terms: Fibrosis/immunology*
  3. Ganesh PS, Vishnupriya S, Vadivelu J, Mariappan V, Vellasamy KM, Shankar EM
    Microbiol. Immunol., 2020 Feb;64(2):87-98.
    PMID: 31769530 DOI: 10.1111/1348-0421.12762
    Burkholderia cepacia complex (Bcc) are opportunistic pathogens implicated with nosocomial infections, and high rates of morbidity and mortality, especially in individuals with cystic fibrosis (CF). B. cepacia are naturally resistant to different classes of antibiotics, and can subvert the host innate immune responses by producing quorum sensing (QS) controlled virulence factors and biofilms. It still remains a conundrum as to how exactly the bacterium survives the intracellular environment within the host cells of CF patients and immunocompromised individuals although the bacterium can invade human lung epithelial cells, neutrophils, and murine macrophages. The mechanisms associated with intracellular survival in the airway epithelial cells and the role of QS and virulence factors in B. cepacia infections in cystic fibrosis remain largely unclear. The current review focuses on understanding the role of QS-controlled virulence factors and biofilms, and provides additional impetus to understanding the potentials of QS-inhibitory strategies against B. cepacia.
    Matched MeSH terms: Cystic Fibrosis/immunology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links