A study was conducted to establish in vitro culture conditions for maximum production of biomass and flavonoid content for Ficus deltoidea var. kunstleri, locally named as Mas Cotek, known to have a wide variety of potential beneficial attributes for human health. Size of initial inoculum, cell aggregate and initial pH value have been suggested to influent content of biomass and flavonoid for cell suspension culture in several plant species. In the present study, leaf explants were cultured by cell suspension culture procedures in MSB5 basal medium supplemented with predetermined supplements of 30 g/L sucrose, 2.75 g/L gelrite, 2 mg/L picloram and 1 mg/L kinetin with continuous agitation of 120 rpm in a standard laboratory environment. Establishment of cell suspension culture was accomplished by culturing resulting callus in different initial fresh weight of cells (0.10, 0.25, 0.50, 1.0, and 2.0 g/25 mL of media) using similar basal medium. The results showed that the highest production of biomass (0.65 g/25 mL of media) was recorded from an initial inoculum size of 2.0 g/25 mL media, whereas the highest flavonoid (3.3 mg RE/g DW) was found in 0.5 g/25 mL of media. Cell suspension fractions classified according to their sizes (500-750 µm, 250-500 µm, and <250 µm). Large cell aggregate size (500-750 µm) cultured at pH 5.75 produced the highest cell biomass (0.28 g/25 mL media) and flavonoid content (3.3 mg RE/g DW). The study had established the optimum conditions for the production of total antioxidant and flavonoid content using DPPH and FRAP assays in cell suspension culture of F. deltoidea var. kunstleri.
This study investigated the effects of a standardised ethanol and water extract of Ficus deltoidea var. Kunstleri (FDK) on blood pressure, renin-angiotensin-aldosterone system (RAAS), endothelial function and antioxidant system in spontaneously hypertensive rats (SHR). Seven groups of male SHR were administered orally in volumes of 0.5 mL of either FDK at doses of 500, 800, 1000 and 1300 mg kg- 1, or captopril at 50 mg kg- 1 or losartan at 10 mg kg- 1 body weight once daily for 4 weeks or 0.5 mL distilled water. Body weight, systolic blood pressures (SBP) and heart rate (HR) were measured every week. 24-hour urine samples were collected at weeks 0 and 4 for electrolyte analysis. At week 4, sera from rats in the control and 1000 mg kg- 1 of FDK treated groups were analyzed for electrolytes and components of RAAS, endothelial function and anti-oxidant capacity. SBP at week 4 was significantly lower in all treatment groups, including captopril and losartan, when compared to that of the controls. Compared to the controls, ACE activity and concentrations of angiotensin I, angiotensin II and aldosterone were lower whereas concentrations of angiotensinogen and angiotensin converting enzyme 2 were higher in FDK treated rats. Concentration of eNOS and total anti-oxidant capacity were higher in FDK treated rats. Urine calcium excretion was higher in FDK treated rats. In conclusion, it appears that ethanol and water extract of FDK decreases blood pressure in SHR, which might involve mechanisms that include RAAS, anti-oxidant and endothelial system.