Displaying all 4 publications

Abstract:
Sort:
  1. Raharjo Y, Sanagi MM, Ibrahim WA, Naim AA, Aboul-Enein HY
    J Sep Sci, 2009 Feb;32(4):623-9.
    PMID: 19165835 DOI: 10.1002/jssc.200800566
    A liquid-phase microextraction coupled with LC method has been developed for the determination of organophosphorus pesticides (methidation, quinalphos and profenofos) in drinking water samples. In this method, a small amount (3 microL) of isooctane as the acceptor phase was introduced continually to fill-up the channel of a 1.5 cm polypropylene hollow fiber using a microsyringe while the hollow fiber was immersed in an aqueous donor solution. A portion of the acceptor phase (ca. 0.4 microL) was first introduced into the hollow fiber and additional amounts (ca. 0.2 microL) of the acceptor phase were introduced to replenish at intervals of 3 min until set end of extraction (40 min). After extraction, the acceptor phase was withdrawn and transferred into a 2 mL vial for a drying step prior to injection into a LC system. Parameters that affect the extraction efficiency were studied including the organic solvent, length of fiber, volume of acceptor and donor phase, stirring rate, extraction time, and effect of salting out. The proposed method provided good enrichment factors of up to 189.50, with RSD ranging from 0.10 to 0.29%, analyte recoveries of over 79.80% and good linearity ranging from 10.0 to 1.25 mg/L. The LOD ranged from 2.86 to 82.66 microg/L. This method was applied successfully to the determination of organophosphorus pesticides in selected drinking water samples.
    Matched MeSH terms: Flow Injection Analysis/methods*
  2. Saad B, Wai WT, Ali AS, Saleh MI
    Anal Sci, 2006 Jan;22(1):45-50.
    PMID: 16429771
    A flow injection analysis (FIA) method for the determination of four residual chlorine species, namely combined available chlorine (CAC), free available chlorine (FAC), total available chlorine (TAC) and chlorite (ClO2-) was developed using a flow-through triiodide-selective electrode as a detector. An important strategy of speciation studies utilized the kinetic discrimination of reactions between the CAC and FAC with Fe2+, which was applied to the speciation of FAC, CAC and TAC. The speciation of available chlorine species and chlorite (an oxychlorine species) was achieved by using the same set-up, but using flow streams of different pH. The effects of the pH of the carrier stream, the flow rate and the sample volume were studied. The method exhibited linearity from 2.8 x 10(-6) to 2.8 x 10(-4) M active chlorine (expressed as OCl-) with a detection limit of 1.4 x 10(-6) M. The selectivity of the method was studied by examining the minimum pH for the oxidation of iodide by other oxidants, and also by assessing the potentiometric selectivity coefficients. The proposed method was successfully applied to the determination of chlorine species in tap water, and disinfecting formulations where good agreement occurred between the proposed and standard methods were found.
    Matched MeSH terms: Flow Injection Analysis/methods
  3. Teh CH, Murugaiyah V, Chan KL
    J Chromatogr A, 2011 Apr 8;1218(14):1861-77.
    PMID: 21367427 DOI: 10.1016/j.chroma.2011.02.014
    An extensive comparative study on the electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) mass spectrometry using automated flow injection analysis (FIA), was performed on eurycomanone (1), 13α(21)-epoxyeurycomanone (2), eurycomanol (3), eurycomanol-2-O-β-d-glucopyranoside (4), and 13,21-dihydroeurycomanone (5), the bioactive markers isolated from Eurycoma longifolia. The effects of eluent mixture (methanol or acetonitrile in water) and acidic modifiers (acetic acid, formic acid and trifluoroacetic acid) on the ionization efficiency of the markers were also investigated. The ESI in the positive ion mode with methanol containing 0.1% (v/v) acetic acid was selected for the subsequent optimization of nebulizer pressure, dry gas flow, dry gas temperature and capillary voltage to improve the sensitivity of the total ion chromatogram (TIC). Fragmentation of the analytes was further investigated by varying the capillary exit offset voltage and fragmentation amplitude in positive mode of ESI. The detection limits (LODs) were determined in isolation mode (selected ion monitoring, SIM). Their limits of detection (LODs) ranged between 0.03 and 0.1μgmL(-1) while the intra-day and inter-day precisions were less than 5.72% and 4.82%, respectively. The method was next applied for the simultaneous analysis of the markers to standardize various batches of manufactured extracts of E. longifolia for potential use as antimalarial products. Multiple Reaction Monitoring (MRM) mode was used for the quantification of analytes which gave protonated molecular ion, [M+H](+). For those without pseudo-molecular ions, SIM mode was used to quantify the analytes. The batches contained 5.65-9.95% of eurycomanone (1), 5.21-19.75% of eurycomanol (3) and 7.59-19.95% of eurycomanol-2-O-β-d-glucopyranoside (4) as major quassinoids whereas, 13α(21)-epoxyeurycomanone (2), and 13,21-dihydroeurycomanone (5) were much lower in concentrations of 0.78-3.90% and 0.47-1.76%, respectively.
    Matched MeSH terms: Flow Injection Analysis/methods
  4. Che Harun FK, Covington JA, Gardner JW
    IET Nanobiotechnol, 2012 Jun;6(2):45-51.
    PMID: 22559706 DOI: 10.1049/iet-nbt.2010.0032
    In this study the authors report on the development of a new type of electronic nose (e-nose) instrument, which the authors refer to as the Portable electronic Mucosa (PeM) as a continuation of previous research. It is designed to mimic the human nose by taking significant biological features and replicating them electronically. The term electronic mucosa or simply e-mucosa was used because our e-nose emulates the nasal chromatographic effect discovered in the olfactory epithelium, located within the upper turbinate. The e-mucosa generates spatio-temporal information that the authors believe could lead to improved odour discrimination. The PeM comprises three large sensor arrays each containing a total of 576 sensors, with 24 different coatings, to increase the odour selectivity. The nasal chromatographic effect provides temporal information in the human olfactory system, and is mimicked here using two-coated retentive channels. These channels are coated with polar and non-polar compounds to enhance the selectivity of the instrument. Thus, for an unknown sample, the authors have both the spatial information (as with a traditional e-nose) and the temporal information. The authors believe that this PeM may offer a way forward in developing a new range of low-cost e-noses with superior odour specificity.
    Matched MeSH terms: Flow Injection Analysis/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links