In this study, bulrush (Scirpus grossus) was subjected to a 72 day phytotoxicity test to assess its ability to phytoremediate diesel contamination in simulated wastewater at different concentrations (0, 8700, 17,400 and 26,100mg/L). Diesel degradation by S. grossus was measured in terms of total petroleum hydrocarbon (TPH-D). The TPH-D concentration in the synthetic wastewater was determined with the liquid-liquid extraction method and gas chromatography. S. grossus was found to reduce TPH-D by 70.0 and 80.2% for concentrations of 8700 mg/L and 17,400mg/L, respectively. At a diesel concentration of 26,100mg/L, S. grossus died after 14 days. Additionally, the biomass of S. grossus plants was found to increase throughout the phytotoxicity test, confirming the ability of the plant to survive in water contaminated with diesel at rates of less than 17,400mg/L.
This study was designed to mimic homicide or suicide cases using gasoline. Six adult long-tailed macaque (Macaca fascicularis), weighing between 2.5 to 4.0 kg, were equally divided into control and test groups. The control group was sacrificed by a lethal dose of phenobarbital intracardiac while test group was force fed with two doses of gasoline LD50 (37.7 ml/kg) after sedation with phenobarbital. All carcasses were then placed in a decomposition site to observe the decomposition and invasion process of cadaveric fauna on the carcasses. A total of five decomposition stages were recognized during this study. This study was performed during July 2007. Fresh stage of control and test carcasses occurred between 0 to 15 and 0 to 39 hours of exposure, respectively. The subsequent decomposition stages also exhibited the similar pattern whereby the decomposition process of control carcasses were faster than tested one. The first larvae were found on control carcasses after 9 hours of death while the test group carcasses had only their first blowfly eggs after 15 hours of exposure. Blow flies, Achoetandrus rufifacies and Chrysomya megacephala were the most dominant invader of both carcasses throughout the decaying process. Diptera collected from control carcasses comprised of scuttle fly, Megaselia scalaris and flesh fly, sarcophagid. We concluded that the presence of gasoline and its odor on the carcass had delayed the arrival of insect to the carcasses, thereby slowing down the decomposition process in the carcass by 6 hours.