Displaying all 8 publications

Abstract:
Sort:
  1. Pati S, Supeno NE, Muthuraju S, Abdul Hadi R, Ghani AR, Idris FM, et al.
    Biomed Res Int, 2014;2014:503162.
    PMID: 25254208 DOI: 10.1155/2014/503162
    The striatum is considered to be the central processing unit of the basal ganglia in locomotor activity and cognitive function of the brain. IGF-1 could act as a control switch for the long-term proliferation and survival of EGF+bFGF-responsive cultured embryonic striatal stem cell (ESSC), while LIF imposes a negative impact on cell proliferation. The IGF-1-treated ESSCs also showed elevated hTERT expression with demonstration of self-renewal and trilineage commitment (astrocytes, oligodendrocytes, and neurons). In order to decipher the underlying regulatory microRNA (miRNA)s in IGF-1/LIF-treated ESSC-derived neurogenesis, we performed in-depth miRNA profiling at 12 days in vitro and analyzed the candidates using the Partek Genome Suite software. The annotated miRNA fingerprints delineated the differential expressions of miR-143, miR-433, and miR-503 specific to IGF-1 treatment. Similarly, the LIF-treated ESSCs demonstrated specific expression of miR-326, miR-181, and miR-22, as they were nonsignificant in IGF-treated ESSCs. To elucidate the possible downstream pathways, we performed in silico mapping of the said miRNAs into ingenuity pathway analysis. Our findings revealed the important mRNA targets of the miRNAs and suggested specific interactomes. The above studies introduced a new genre of miRNAs for ESSC-based neuroregenerative therapeutic applications.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects
  2. Theron KE, Penny CB, Hosie MJ
    Reprod Biol, 2014 Sep;14(3):224-33.
    PMID: 25152521 DOI: 10.1016/j.repbio.2014.04.005
    RU486 is a partial progesterone and estrogen receptor antagonist, functioning to actively silence progesterone receptor gene-associated transcription. For this reason, it has been used as both a contraceptive and an abortive agent. In the present study, cellular and gene specific effects of RU486 were investigated in a rat model of early pregnancy, including key phases of the window of receptivity and early implantation. As these stages are hormonally regulated by progesterone and estrogens, the focus here was to elucidate the mechanism of action of a single dose of RU486, used as a postcoital contraceptive, to successfully prevent implantation of a viable blastocyst. Immunofluorescent techniques were used to examine the change in protein levels of PR in RU486-treated endometria at days 4.5, 5.5 and 6.5 of pregnancy. Changes in the Pgr gene expression level as a consequence of RU486 administration was evaluated using quantitative real-time reverse transcription polymerase chain reaction. The progesterone receptor gene and protein expression was ubiquitously decreased throughout pregnancy as a direct consequence of RU486 administration. The overall effects of postcoital RU486 administration during early pregnancy indicate highly effective inhibition of progesterone and estrogen effects on the endometrium, mediated by their receptors. More specifically, the expression and localization of the progesterone receptor mirrors that described in ovariectomized animal models, suggesting a hormonally under-stimulated endometrium. Clearly from the present study, the precise priming of the endometrium by progesterone, in preparation for blastocyst implantation, is severely impaired by RU486, thus predisposing the uterus to pregnancy failure.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects*
  3. Jafari S, Hosseini SM, Hajian M, Forouzanfar M, Jafarpour F, Abedi P, et al.
    J Assist Reprod Genet, 2011 Nov;28(11):1119-27.
    PMID: 22020531 DOI: 10.1007/s10815-011-9638-1
    To investigate the effect of epigenetic modification on pattern, time and capacity of transcription activation of POU5F1, the key marker of pluripotency, in cloned bovine embryos.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects
  4. Jafari S, Hosseini MS, Hajian M, Forouzanfar M, Jafarpour F, Abedi P, et al.
    Mol. Reprod. Dev., 2011 Aug;78(8):576-84.
    PMID: 21721066 DOI: 10.1002/mrd.21344
    In this study, fibroblast cells were stably transfected with mouse POU5F1 promoter-driven enhanced green fluorescent protein (EGFP) to investigate the effect of S-adenosylhomocysteine (SAH), the reversible non-toxic inhibitor of DNA-methyltransferases (DNMTs), at different intervals post-fusion on in vitro development of cloned bovine embryos. Treatment with SAH for 12 hr resulted in 54.6 ± 7.7% blastocyst production, which was significantly greater than in vitro fertilized embryos (IVF: 37.2 ± 2.7%), cloned embryos treated with SAH for 72 hr (31.0 ± 7.6%), and control cloned embryos (34.6 ± 3.6%). The fluorescence intensities of the EGFP-POU5F1 reporter gene at all intervals of SAH treatment, except of 72 hr, were significantly higher than control somatic cell nuclear transfers (SCNT) embryos. The intensity of DNA-methylation in cloned embryos treated with SAH for 48 hr was similar to that of IVF embryos, and was significantly lower than the other SCNT groups. The levels of H3K9 acetylation in all SCNT groups were significantly lower than IVF embryos. Real-time PCR analysis of gene expression revealed significantly higher expression of POU5F1 in cloned versus IVF blastocysts. Neither embryo production method (SCNT vs. IVF) nor the SAH treatment interval affected expression of the BCL2 gene. Cloned embryos at all intervals of SAH treatment, except for 24 hr, had significantly increased VEGF transcript compared to IVF and control SCNT embryos. It was suggested that the time interval of DNMT inhibition may have important consequences on different in vitro features of bovine SCNT, and the improving effects of DNMT inhibition on developmental competency of cloned embryos are restricted to a specific period of time preceding de novo methylation.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects*
  5. Samuel MS, Rath N, Masre SF, Boyle ST, Greenhalgh DA, Kochetkova M, et al.
    Genesis, 2016 Dec;54(12):636-646.
    PMID: 27775859 DOI: 10.1002/dvg.22988
    The serine/threonine kinases ROCK1 and ROCK2 are central mediators of actomyosin contractile force generation that act downstream of the RhoA small GTP-binding protein. As a result, they have key roles in regulating cell morphology and proliferation, and have been implicated in numerous pathological conditions and diseases including hypertension and cancer. Here we describe the generation of a gene-targeted mouse line that enables CRE-inducible expression of a conditionally-active fusion between the ROCK2 kinase domain and the hormone-binding domain of a mutated estrogen receptor (ROCK2:ER). This two-stage system of regulation allows for tissue-selective expression of the ROCK2:ER fusion protein, which then requires administration of estrogen analogues such as tamoxifen or 4-hydroxytamoxifen to elicit kinase activity. This conditional gain-of-function system was validated in multiple tissues by crossing with mice expressing CRE recombinase under the transcriptional control of cytokeratin14 (K14), murine mammary tumor virus (MMTV) or cytochrome P450 Cyp1A1 (Ah) promoters, driving appropriate expression in the epidermis, mammary or intestinal epithelia respectively. Given the interest in ROCK signaling in normal physiology and disease, this mouse line will facilitate research into the consequences of ROCK activation that could be used to complement conditional knockout models. Birth Defects Research (Part A) 106:636-646, 2016. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects
  6. Ong WD, Okubo-Kurihara E, Kurihara Y, Shimada S, Makita Y, Kawashima M, et al.
    Plant Cell Physiol, 2017 01 01;58(1):95-105.
    PMID: 28011868 DOI: 10.1093/pcp/pcw181
    Plants have a remarkable ability to perceive and respond to various wavelengths of light and initiate regulation of different cascades of light signaling and molecular components. While the perception of red light and the mechanisms of its signaling involving phytochromes are largely known, knowledge of the mechanisms of blue light signaling is still limited. Chemical genetics involves the use of diverse small active or synthetic molecules to evaluate biological processes. By combining chemicals and analyzing the effects they have on plant morphology, we identified a chemical, 3-bromo-7-nitroindazole (3B7N), that promotes hypocotyl elongation of wild-type Arabidopsis only under continuous blue light. Further evaluation with loss-of-function mutants confirmed that 3B7N inhibits photomorphogenesis through cryptochrome-mediated light signaling. Microarray analysis demonstrated that the effect of 3B7N treatment on gene expression in cry1cry2 is considerably smaller than that in the wild type, indicating that 3B7N specifically interrupts cryptochrome function in the control of seedling development in a light-dependent manner. We demonstrated that 3B7N directly binds to CRY1 protein using an in vitro binding assay. These results suggest that 3B7N is a novel chemical that directly inhibits plant cryptochrome function by physical binding. The application of 3B7N can be used on other plants to study further the blue light mechanism and the genetic control of cryptochromes in the growth and development of plant species.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects
  7. Prasad TNVKV, Adam S, Visweswara Rao P, Ravindra Reddy B, Giridhara Krishna T
    IET Nanobiotechnol, 2017 Apr;11(3):277-285.
    PMID: 28476985 DOI: 10.1049/iet-nbt.2015.0122
    Advancement in materials synthesis largely depends up on their diverse applications and commercialisation. Antifungal effects of phytogenic silver nanoparticles (AgNPs) were evident, but the reports on the effects of the same on agricultural crops are scant. Herein, we report for the first time, size dependent effects of phytogenic AgNPs (synthesised using Stevia rebaudiana leaf extract) on the germination, growth and biochemical parameters of three important agricultural crops viz., rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). AgNPs with varied sizes were prepared by changing the concentration and quantity of the Stevia rebaudiana leaf extract. As prepared AgNPs were characterized using the techniques, such as high-resolution transmission electron microscopy, particle size and zeta potential analyser. The measured (dynamic light scattering technique) average sizes of particles are ranging from 68.5 to 116 nm. Fourier transform infrared studies confirmed the participation of alcohols, aldehydes and amides in the reduction and stabilisation of the AgNPs. Application of these AgNPs to three agricultural crop seeds (rice, maize and peanut) resulted in size dependent effects on their germination, growth and biochemical parameters such as, chlorophyll content, carotenoid and protein content. Further, antifungal activity of AgNPs also evaluated against fungi, Aspergillus niger.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects
  8. Soga T, Wong DW, Putteeraj M, Song KP, Parhar IS
    Neuroscience, 2012 Dec 6;225:172-84.
    PMID: 22960312 DOI: 10.1016/j.neuroscience.2012.08.061
    Postnatal treatment with selective serotonin reuptake inhibitors (SSRIs) has been found to affect brain development and the regulation of reproduction in rodent models. The normal masculinization process in the brain requires a transient decrease in serotonin (5-HT) levels in the brain during the second postnatal week. Strict regulation of androgen receptor (AR) and gonadotropin-releasing hormone (GnRH) expression is important to control male reproductive activity. Therefore, this study was designed to examine the effects of a potent SSRI (citalopram) on male sexual behavior and expression levels of AR and GnRH in adult male mice receiving either vehicle or citalopram (10mg/kg) daily during postnatal days 8-21. The citalopram-treated male mice showed altered sexual behavior, specifically a significant reduction in the number of intromissions preceding ejaculation compared with the vehicle-treated mice. The citalopram-treated male mice displayed elevated anxiety-like behavior in an open field test and lower locomotor activity in their home cage during the subjective night. Although there was no change in GnRH and AR mRNA levels in the preoptic area (POA), quantified by real-time polymerase chain reaction, immunostained AR cell numbers in the medial POA were decreased in the citalopram-treated male mice. These results suggest that the early-life inhibition of 5-HT transporters alters the regulation of AR expression in the medial POA, likely causing decreased sexual behavior and altered home cage activity in the subjective night.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links