Displaying all 2 publications

Abstract:
Sort:
  1. Tang PW, Chua PS, Chong SK, Mohamad MS, Choon YW, Deris S, et al.
    Recent Pat Biotechnol, 2015;9(3):176-97.
    PMID: 27185502
    BACKGROUND: Predicting the effects of genetic modification is difficult due to the complexity of metabolic net- works. Various gene knockout strategies have been utilised to deactivate specific genes in order to determine the effects of these genes on the function of microbes. Deactivation of genes can lead to deletion of certain proteins and functions. Through these strategies, the associated function of a deleted gene can be identified from the metabolic networks.

    METHODS: The main aim of this paper is to review the available techniques in gene knockout strategies for microbial cells. The review is done in terms of their methodology, recent applications in microbial cells. In addition, the advantages and disadvantages of the techniques are compared and discuss and the related patents are also listed as well.

    RESULTS: Traditionally, gene knockout is done through wet lab (in vivo) techniques, which were conducted through laboratory experiments. However, these techniques are costly and time consuming. Hence, various dry lab (in silico) techniques, where are conducted using computational approaches, have been developed to surmount these problem.

    CONCLUSION: The development of numerous techniques for gene knockout in microbial cells has brought many advancements in the study of gene functions. Based on the literatures, we found that the gene knockout strategies currently used are sensibly implemented with regard to their benefits.

    Matched MeSH terms: Gene Knockout Techniques/methods*
  2. Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE, et al.
    PLoS One, 2014;9(7):e102744.
    PMID: 25047076 DOI: 10.1371/journal.pone.0102744
    Microbial strains optimization for the overproduction of desired phenotype has been a popular topic in recent years. The strains can be optimized through several techniques in the field of genetic engineering. Gene knockout is a genetic engineering technique that can engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, the complexities of the metabolic networks have made the process to identify the effects of genetic modification on the desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to the combinatorial problem in obtaining optimal gene deletion strategy. Basically, the size of a genome-scale metabolic model is usually large. As the size of the problem increases, the computation time increases exponentially. In this paper, we propose Differential Bees Flux Balance Analysis (DBFBA) with OptKnock to identify optimal gene knockout strategies for maximizing the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by improving the performance of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by hybridizing Differential Evolution (DE) algorithm into neighborhood searching strategy of BAFBA. In addition, DBFBA is integrated with OptKnock to validate the results for improving the reliability the work. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as the model organisms, DBFBA has shown a better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes compared to the methods used in previous works.
    Matched MeSH terms: Gene Knockout Techniques/methods*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links