Displaying all 5 publications

Abstract:
Sort:
  1. Fix AG
    Ann. Hum. Genet., 1978 Jan;41(3):329-39.
    PMID: 626477
    Most current models of human population structure view migration solely as a deterministic force reducing the variance in gene frequencies among the local colonies of a subdivided population. By an empirical example and through simulation experiments, it is shown that migration structured along kinship lines (by analogy to the lineal or 'kinship' effect) does not always reduce the variances of gene frequencies arising through intergenerational random genetic drift. Thus populations experiencing high rates of migration may not be genetically homogenous.
    Matched MeSH terms: Gene Pool
  2. van Zonneveld M, Rakha M, Tan SY, Chou YY, Chang CH, Yen JY, et al.
    Sci Rep, 2020 02 07;10(1):2111.
    PMID: 32034221 DOI: 10.1038/s41598-020-58646-8
    This study provides insights in patterns of distribution of abiotic and biotic stress resilience across Vigna gene pools to enhance the use and conservation of these genetic resources for legume breeding. Vigna is a pantropical genus with more than 88 taxa including important crops such as V. radiata (mung bean) and V. unguiculata (cowpea). Our results show that sources of pest and disease resistance occur in at least 75 percent of the Vigna taxa, which were part of screening assessments, while sources of abiotic stress resilience occur in less than 30 percent of screened taxa. This difference in levels of resilience suggests that Vigna taxa co-evolve with pests and diseases while taxa are more conservative to adapt to climatic changes and salinization. Twenty-two Vigna taxa are poorly conserved in genebanks or not at all. This germplasm is not available for legume breeding and requires urgent germplasm collecting before these taxa extirpate on farm and in the wild. Vigna taxa, which tolerate heat and drought stress are rare compared with taxa, which escape these stresses because of short growing seasons or with taxa, which tolerate salinity. We recommend prioritizing these rare Vigna taxa for conservation and screening for combined abiotic and biotic stress resilience resulting from stacked or multifunctional traits. The high presence of salinity tolerance compared with drought stress tolerance, suggests that Vigna taxa are good at developing salt-tolerant traits. Vigna taxa are therefore of high value for legume production in areas that will suffer from salinization under global climate change.
    Matched MeSH terms: Gene Pool
  3. Ibrahim Z, Tsuboi Y, Ono O
    IEEE Trans Nanobioscience, 2006 Jun;5(2):103-9.
    PMID: 16805106
    Previously, direct-proportional length-based DNA computing (DPLB-DNAC) for solving weighted graph problems has been reported. The proposed DPLB-DNAC has been successfully applied to solve the shortest path problem, which is an instance of weighted graph problems. The design and development of DPLB-DNAC is important in order to extend the capability of DNA computing for solving numerical optimization problem. According to DPLB-DNAC, after the initial pool generation, the initial solution is subjected to amplification by polymerase chain reaction and, finally, the output of the computation is visualized by gel electrophoresis. In this paper, however, we give more attention to the initial pool generation of DPLB-DNAC. For this purpose, two kinds of initial pool generation methods, which are generally used for solving weighted graph problems, are evaluated. Those methods are hybridization-ligation and parallel overlap assembly (POA). It is found that for DPLB-DNAC, POA is better than that of the hybridization-ligation method, in terms of population size, generation time, material usage, and efficiency, as supported by the results of actual experiments.
    Matched MeSH terms: Gene Pool
  4. Brucato N, Kusuma P, Cox MP, Pierron D, Purnomo GA, Adelaar A, et al.
    Mol Biol Evol, 2016 09;33(9):2396-400.
    PMID: 27381999 DOI: 10.1093/molbev/msw117
    Malagasy genetic diversity results from an exceptional protoglobalization process that took place over a thousand years ago across the Indian Ocean. Previous efforts to locate the Asian origin of Malagasy highlighted Borneo broadly as a potential source, but so far no firm source populations were identified. Here, we have generated genome-wide data from two Southeast Borneo populations, the Banjar and the Ngaju, together with published data from populations across the Indian Ocean region. We find strong support for an origin of the Asian ancestry of Malagasy among the Banjar. This group emerged from the long-standing presence of a Malay Empire trading post in Southeast Borneo, which favored admixture between the Malay and an autochthonous Borneo group, the Ma'anyan. Reconciling genetic, historical, and linguistic data, we show that the Banjar, in Malay-led voyages, were the most probable Asian source among the analyzed groups in the founding of the Malagasy gene pool.
    Matched MeSH terms: Gene Pool
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links