Displaying all 3 publications

Abstract:
Sort:
  1. Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M
    Sensors (Basel), 2015;15(10):24681-97.
    PMID: 26404269 DOI: 10.3390/s151024681
    Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM) images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM(-1)), with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50 ± 10) µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%.
    Matched MeSH terms: Glucose Oxidase/metabolism*
  2. Yee YC, Hashim R, Mohd Yahya AR, Bustami Y
    Sensors (Basel), 2019 May 31;19(11).
    PMID: 31159318 DOI: 10.3390/s19112511
    Glucose oxidase (EC 1.1.3.4) sensors that have been developed and widely used for glucose monitoring have generally relied on electrochemical principle. In this study, the potential use of colorimetric method for glucose detection utilizing glucose oxidase-magnetic cellulose nanocrystals (CNCs) is explored. Magnetic cellulose nanocrystals (magnetic CNCs) were fabricated using iron oxide nanoparticles (IONPs) and cellulose nanocrystals (CNCs) via electrostatic self-assembly technique. Glucose oxidase was successfully immobilized on magnetic CNCs using carbodiimide-coupling reaction. About 33% of GOx was successfully attached on magnetic CNCs, and the affinity of GOx-magnetic CNCs to glucose molecules was slightly higher than free enzymes. Furthermore, immobilization does not affect the specificity of GOx-magnetic CNCs towards glucose and can detect glucose from 0.25 mM to 2.5 mM. Apart from that, GOx-magnetic CNCs stored at 4 °C for 4 weeks retained 70% of its initial activity and can be recycled for at least ten consecutive cycles.
    Matched MeSH terms: Glucose Oxidase/metabolism*
  3. Ge Y, Lakshmipriya T, Gopinath SC, Anbu P, Chen Y, Hariri F, et al.
    Int J Nanomedicine, 2019;14:7851-7860.
    PMID: 31632005 DOI: 10.2147/IJN.S222238
    BACKGROUND: Gestational diabetes mellitus is a commonly occurring metabolic disorder during pregnancy, affecting >4% of pregnant women. It is generally defined as the intolerance of glucose with the onset or initial diagnosis during pregnancy. This illness affects the placenta and poses a threat to the baby as it affects the supply of proper oxygen and nutrients.

    PURPOSE: Due to the high percentage of affected pregnant women, it should be mandatory to evaluate glucose levels during pregnancy and there is a need for a continuous monitoring system.

    METHODS: Herein, the investigators modified the interdigitated (di)electrodes (IDE) sensing surface to detect the glucose on covalently immobilized glucose oxidase (GOx) with the graphene. The characterization of graphene and gold nanoparticle (GNP) was performed by high-resolution microscopy.

    RESULTS: Sensitivity was found to be 0.06 mg/mL and to enhance the detection, GOx was complexed with GNP. GNP-GOx was improved the sensitive detection twofold from 0.06 to 0.03 mg/mL, and it also displayed higher levels of current changes at all the concentrations of glucose that were tested. High-performance of the above IDE sensing system was attested by the specificity, reproducibility and higher sensitivity detections. Further, the linear regression analysis indicated the limit of detection to be between 0.02 and 0.03 mg/mL.

    CONCLUSION: This study demonstrated the potential strategy with nanocomposite for diagnosing gestational diabetes mellitus.

    Matched MeSH terms: Glucose Oxidase/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links