To enhance the gel properties of Alaskan pollock surimi, the Acetes chinensis powder (ACP) with different contents (0.5-3 % w/w) was added to the surimi and its mechanisms were investigated. Results showed that adding 1.5 % ACP increased gel strength to 4198.47 g·cm, improved textural properties and storage modulus (G'), as well as reduced free water and drip loss by 49.7 % and 36.7 %, respectively. Moreover, secondary structure analysis showed a 33.5 % increase in β-sheet and a 34.7 % decrease in random coil, reflecting a more organized protein structure. This is associated with a 195.6 % increase in endogenous glutaminase activity and a 14.7 % increase in facilitated cross-linking of MHC heavy chains. ACP also promoted the unfolding of protein and the exposing of more sulfhydryl groups that converted into disulfide bonds (increased by 4.8 %). These resulted in a more compact protein structure, denser microstructure, and homogeneous gel network. In conclusion, 1.5 % ACP effectively improves surimi gel properties, offering valuable insights for optimizing thermal gelation.