Displaying all 4 publications

Abstract:
Sort:
  1. Aizuddin NNF, Ganesan N, Ng WC, Ali AH, Ibrahim I, Basir R, et al.
    Trop Biomed, 2020 Dec 01;37(4):1105-1116.
    PMID: 33612762 DOI: 10.47665/tb.37.4.1105
    Malaria is a life-threatening disease caused by the Plasmodium sp. parasite. Infection results in heightened pro-inflammatory response which contributes to the pathophysiology of the disease. To mitigate the overwhelming cytokine response, host-directed therapy is a plausible approach. Glycogen synthase kinase-3β (GSK3β), a serine/threonine kinase plays a pivotal role in the regulation of inflammatory response during pathogenic infections. The present study was conducted to investigate the chemo-suppressive and cytokine-modulating effects of insulin administration in malaria-infected mice and the involvement of GSK3β. Intraperitoneal administrations of 0.3 and 0.5 U/kg body weight insulin each for four consecutive days into Plasmodium berghei NK65 (PbN)-infected mice resulted in chemo-suppression exceeding 60% and improved median survival time of infected mice (20.5 days and 19 days respectively compared to 15.5 days for non-treated control). Western analysis revealed that pGSK3β (Ser9) intensity in brain samples from insulin-treated (0.3 and 0.5 U/kg body weight) infected mice each were 0.6 and 2.2 times respectively than that in control. In liver samples, pGSK3β (Ser9) intensity from insulin-treated infected mice were significantly higher (4.8 and 16.1 fold for 0.3 and 0.5 U/kg bw respectively) than that in control. Insulin administration decreased both brain and liver pNF-κB p65 (Ser536) intensities (to 0.8 and 0.6 times for 0.3 U/kg bw insulin; and to 0.2 and 0.1 times for 0.5 U/kg bw insulin respectively compared to control). Insulin treatment (0.5 U/kg bw) also significantly decreased the serum levels of pro-inflammatory cytokines (TNF-α (3.3 times) and IFN-γ (4.9 times)) whilst significantly increasing the levels of anti-inflammatory cytokines (IL-4 (4.9 fold) and IL-10 (2.1 fold)) in PbN-infected mice. Results from this study demonstrated that the cytokinemodulating effects of insulin at least in part involve inhibition of GSK3β and consequent inhibition of the activation of NF-κB p65 suggesting insulin as a potential adjunctive therapeutic for malaria.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors*
  2. Teo CH, Soga T, Parhar I
    Sci Rep, 2020 08 17;10(1):13876.
    PMID: 32807874 DOI: 10.1038/s41598-020-70710-x
    Neurons synthesizing gonadotropin-inhibitory hormone (GnIH) have been implicated in the control of reproduction, food intake and stress. Serotonin (5-HT) receptors have been shown in GnIH neurons; however, their functional role in the regulation of GnIH neurons remains to be elucidated. In this study, we measured intracellular calcium ion levels following 5-HT treatment to hypothalamic primary cultures of enhanced fluorescent green protein-tagged GnIH (EGFP-GnIH) neurons from Wistar rat pups of mixed sex. Three days after initial seeding of the primary cultures, the test groups were pre-treated with lithium chloride to selectively inhibit glycogen synthase kinase 3 beta to promote intracellular calcium levels, whereas the control groups received culture medium with no lithium chloride treatment. 24 h later, the cultures were incubated with rhodamine-2AM (rhod-2AM) calcium indicator dye for one hour prior to imaging. 5-HT was added to the culture dishes 5 min after commencement of imaging. Analysis of intracellular calcium levels in EGFP-GnIH neurons showed that pre-treatment with lithium chloride before 5-HT treatment resulted in significant increase in intracellular calcium levels, two times higher than the baseline. This suggests that lithium chloride enhances the responsiveness of GnIH neurons to 5-HT.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors
  3. Hassan WRM, Basir R, Ali AH, Embi N, Sidek HM
    Trop Biomed, 2019 Sep 01;36(3):776-791.
    PMID: 33597499
    Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase3β (GSK3β) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3β. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 µM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3β (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3β inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors
  4. Ali AH, Sudi S, Basir R, Embi N, Sidek HM
    J Med Food, 2017 Feb;20(2):152-161.
    PMID: 28146408 DOI: 10.1089/jmf.2016.3813
    Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links