Displaying all 6 publications

Abstract:
Sort:
  1. Shariff M, Jayawardena PA, Yusoff FM, Subasinghe R
    Fish Shellfish Immunol, 2001 May;11(4):281-91.
    PMID: 11417716
    This study was to determine the median lethal concentration (LC50) of copper to Javenese carp, Puntius gonionotus (Bleeker), and the immune response after the fish were exposed to sublethal levels of copper and challenged with formalin killed Aeromonas hydrophila. The LC50 of copper on P. gonionotus at 24, 48, 72, 96 and 120 h were estimated as 2.17, 0.91, 0.57, 0.53 and 0.42 mg l(-1), respectively. To determine the effect of copper on the immune system, fish were exposed for 66 days to 0.05, 0.10 and 0.15 mg Cu l(-1). After 56 days of initial exposure to copper, fish were challenged with 0.1 ml of 4.5 x 10(5) cfu ml(-1) formalin killed A. hydrophila and maintained in the same concentration of copper. After the challenge, the immune response was monitored for 2 weeks using haematological and serological assays. During the initial phase of exposure to copper, significant changes were noted in the white blood cell, lysozyme, potential killing activity, total plasma protein, total immunoglobulin and haematocrit levels between the control and treated fish. One week after challenge with A. hydrophila, there was a significant increase in the values of white blood cells, total protein and total immunoglobulin compared to the values before the challenge. However, these values were not significantly different (P>0.05) between the control and the treated fish. In contrast, NBT and lysozyme assays exhibited a significant difference (P<0.05) in fish exposed to 0.10 mg Cu l(-1) (0.525 +/- 0.17; 24.42 +/- 3.35 x 10(2) micromg ml(-1)) and 0.15 mg Cu 1(-1) (0.536 +/- 0.19; 21.78 +/- 1.29 x 10(2) micromg ml(-1)) compared to the control (0.746 +/- 0.31; 30.73 +/- 5.42 x 10(2) micromg ml(-1)) after the bacterial challenge (day 61). There was however no significant difference (P>0.05) in NBT and lysozyme levels in fish exposed to lower level of copper (0.05 mg Cu l(-1)), suggesting the absence of immunosuppressive effects at lower level of exposure.
    Matched MeSH terms: Gram-Negative Bacterial Infections/immunology
  2. Wang R, Hu X, Lü A, Liu R, Sun J, Sung YY, et al.
    Fish Shellfish Immunol, 2019 Nov;94:510-516.
    PMID: 31541778 DOI: 10.1016/j.fsi.2019.09.039
    Skin plays an important role in the innate immune responses of fish, particularly towards bacterial infection. To understand the molecular mechanism of mucosal immunity of fish during bacterial challenge, a de novo transcriptome assembly of crucian carp Carassius auratus skin upon Aeromonas hydrophila infection was performed, the latter with Illumina Hiseq 2000 platform. A total of 118111 unigenes were generated and of these, 9693 and 8580 genes were differentially expressed at 6 and 12 h post-infection, respectively. The validity of the transcriptome results of eleven representative genes was verified by quantitative real-time PCR (qRT-PCR) analysis. A comparison with the transcriptome profiling of zebrafish skin to A. hydrophila with regards to the mucosal immune responses revealed similarities in the complement system, chemokines, heat shock proteins and the acute-phase response. GO and KEGG enrichment pathway analyses displayed the significant immune responses included TLR, MAPK, JAK-STAT, phagosome and three infection-related pathways (ie., Salmonella, Vibrio cholerae and pathogenic Escherichia coli) in skin. To our knowledge, this study is the first to describe the transcriptome analysis of C. auratus skin during A. hydrophila infection. The outcome of this study contributed to the understanding of the mucosal defense mechanisms in cyprinid species.
    Matched MeSH terms: Gram-Negative Bacterial Infections/immunology
  3. Monir MS, Yusoff MSM, Zulperi ZM, Hassim HA, Zamri-Saad M, Amal MNA, et al.
    Fish Shellfish Immunol, 2021 Jun;113:162-175.
    PMID: 33857622 DOI: 10.1016/j.fsi.2021.04.006
    Streptococcosis and motile aeromonad septicemia (MAS) are well-known diseases in tilapia culture, which cause mass mortality with significant economic losses. The development of feed-based bivalent vaccines in controlling these diseases has been initiated, however, the mechanisms of immunities and cross-protection in fish remain unclear. This study was conducted to assess the immuno-protective as well as the cross-protective efficacy of a newly developed feed-based bivalent vaccine against Streptococcus and Aeromonas infections in red hybrid tilapia. A total of five groups of fish were vaccinated orally through two different techniques; bivalent vaccine (inactivated Streptococcus iniae and Aeromonas hydrophila) sprayed on feed pellets (BS group); bivalent vaccine (inactivated S. iniae and A. hydrophila) incorporated in feed (BI group); monovalent inactivated S. iniae and A. hydrophila vaccine separately incorporated into feed as monovalent S. iniae (MS group) and monovalent A. hydrophila (MA group); and control group (without vaccine). The feed-based vaccine was delivered orally at 5% of body weight for five consecutive days. The booster doses were given in the same manner on weeks 2 and 6. Serum and skin mucus samples were collected to assess the IgM responses using indirect ELISA. The first administration of the feed-based vaccine stimulated the IgM levels that lasted until week 3, while the second booster ensured that the IgM levels remained high for a period of 16 weeks in the BI, MS and MA groups. The BI group developed a strong and significantly (P 
    Matched MeSH terms: Gram-Negative Bacterial Infections/immunology*
  4. Munir MB, Hashim R, Nor SAM, Marsh TL
    Fish Shellfish Immunol, 2018 Apr;75:99-108.
    PMID: 29407616 DOI: 10.1016/j.fsi.2018.02.005
    This study examined the effect of dietary prebiotics and probiotics after 16 weeks, followed by 8 weeks of post feeding trial with the control unsupplemented diet on haematological and immune response against Aeromonas hydrophila infection in Channa striata fingerlings. Fish were raised on a 40% protein and 12% lipid feed containing three commercial prebiotics (β-glucan, GOS or galacto-oligosaccharide, MOS or mannan-oligosaccharide); and two probiotics- (Saccharomyces cerevisiae, Lactobacillus acidophilus), respectively and a control. Throughout the study, supplementation with dietary prebiotics and probiotics led to significant (P 
    Matched MeSH terms: Gram-Negative Bacterial Infections/immunology
  5. Chaurasia MK, Nizam F, Ravichandran G, Arasu MV, Al-Dhabi NA, Arshad A, et al.
    Fish Shellfish Immunol, 2016 Jan;48:228-38.
    PMID: 26631804 DOI: 10.1016/j.fsi.2015.11.034
    Considering the importance of heat shock proteins (HSPs) in the innate immune system of prawn, a comparative molecular approach was proposed to study the crustacean large HSPs 60, 70 and 90. Three different large HSPs were identified from freshwater prawn Macrobrachium rosenbergii (Mr) cDNA library during screening. The structural and functional characteristic features of HSPs were studied using various bioinformatics tools. Also, their gene expression and mRNA regulation upon various pathogenic infections was studied by relative quantification using 2(-ΔΔCT) method. MrHSP60 contains a long chaperonin 60 domain at 46-547 which carries a chaperonin 60 signature motif between 427 and 438, whereas MrHSP70 contains a long HSP70 domain at 21-624 and MrHSP90 carries a HSP90 domain at 188-719. The two dimensional analysis showed that MrHSP60 contains more amino acids (52%) in helices, whereas MrHSP70 (40.6%) and MrHSP90 (51.8%) carried more residues in coils. Gene expression results showed significant (P 
    Matched MeSH terms: Gram-Negative Bacterial Infections/immunology
  6. Huang L, Qi W, Zuo Y, Alias SA, Xu W
    Dev Comp Immunol, 2020 12;113:103779.
    PMID: 32735958 DOI: 10.1016/j.dci.2020.103779
    The present study reported the first pathogenic Aeromonas salmonicida (SRW-OG1) isolated from the warm water fish orange-spotted grouper (Epinephelus coioides), and investigated the function of Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor which has been recently found to be closely associated with immune response in mammals and E. coioides. Our results showed that AhR was activated by an unknown ligand in the spleen, intestine and macrophages. Meanwhile, ahr1a and ahr1b were significantly increased in the spleen, intestine and macrophages, whereas ahr2 was only increased in the intestine, which indicated that the contribution of AhR2 to the immune response may be less than that of AhR1a and AhR1b. Some key genes involved in the macrophage inflammatory response, bacterial recognition, and intestinal immunity were significantly up-regulated in the SRW-OG1 infected E. coioides. Nevertheless, declining macrophage ROS production and down-regulation of related genes were also observed, suggesting that SRW-OG1 utilized its virulence mechanisms to prevent macrophage ROS production. Furthermore, AhR inhibitor 3', 4'-DMF and the silence of ahr1a or ahr1b significantly rescued the increased IL-1β and IL-8 induced by SRW-OG1 infection, which proved that the induction of IL-1β and IL-8 in E. coioides macrophages was mediated by AhR. However, BPI/LBP, ROS production and related genes were not affected by AhR. The survival rate and immune escape rate of SRW-OG1 in the ahr1a/ahr1b knocked-down and 3', 4'-DMF treated macrophages were significantly increased compared with those in wild type macrophages. Taken together, it was preliminarily confirmed that ahr1a and ahr1b played an important role in the immune response against A. salmonicida SRW-OG1.
    Matched MeSH terms: Gram-Negative Bacterial Infections/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links