Displaying all 2 publications

Abstract:
Sort:
  1. Mohd Sabri NA, Lee SK, Murugan DD, Ling WC
    Sci Rep, 2022 Oct 21;12(1):17633.
    PMID: 36271015 DOI: 10.1038/s41598-022-21107-5
    Epigallocatechin gallate (EGCG) has been shown to have antihypertensive activity. However, the role of epigallocatechin gallate (EGCG) in improving vascular function via modulation of endothelial nitric oxide synthase (eNOS) in hypertensive subjects is not well researched. Angiotensin II-infused hypertensive mice (8-10 weeks old) received EGCG (50 mg/kg/day) for 14 days via oral gavage. The arterial systolic blood pressure (SBP) was measured using the tail-cuff method every three days. At the end of the treatment, the vascular reactivity of the isolated aortae was studied using wire myographs. The level of nitric oxide (NO), cyclic guanosine monophosphate (cGMP) and tetrahydrobiopterine (BH4) were determined using assay kits while the presence of proteins (NOS, p-eNOS and NOx-2) were determined using by Western blotting. In vivo treatment with EGCG for 14 days significantly attenuated the increase in SBP, alleviated the vascular dysfunction, increased the vascular cGMP and BH4 level as well as the expression of p-eNOS and decreased elevated ROS level and NOx-2 protein in angiotensin II-infused hypertensive mice. Collectively, treatment with EGCG in hypertensive mice exerts a blood pressure lowering effect which is partly attributed to the improvement in the vascular function due to its ability to reduce vascular oxidative stress in the aortic tissue leading to a decrease in eNOS uncoupling thus increasing NO bioavailability.
    Matched MeSH terms: Guanosine Monophosphate/metabolism
  2. Chew BL, Fisk ID, Fray R, Tucker GA, Bodi Z, Ferguson A, et al.
    Plant Cell Rep, 2017 Jan;36(1):81-87.
    PMID: 27662835 DOI: 10.1007/s00299-016-2058-z
    KEY MESSAGE: This study highlights the changes in umami-related nucleotide and glutamate levels when the AMP deaminase gene was elevated in transgenic tomato. Taste is perceived as one of a combination of five sensations, sweet, sour, bitter, salty, and umami. The umami taste is best known as a savoury sensation and plays a central role in food flavour, palatability, and eating satisfaction. Umami flavour can be imparted by the presence of glutamate and is greatly enhanced by the addition of ribonucleotides, such as inosine monophosphate (IMP) and guanosine monophosphate (GMP). The production of IMP is regulated by the enzyme adenosine monophosphate (AMP) deaminase which functions to convert AMP into IMP. We have generated transgenic tomato (Solanum lycopersicum) lines over expressing AMP deaminase under the control of a fruit-specific promoter. The transgenic lines showed substantially enhanced levels of AMP deaminase expression in comparison to the wild-type control. Elevated AMP deaminase levels resulted in the reduced accumulation of glutamate and increased levels of the umami nucleotide GMP. AMP concentrations were unchanged. The effects on the levels of glutamate and GMP were unexpected and are discussed in relation to the metabolite flux within this pathway.
    Matched MeSH terms: Guanosine Monophosphate/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links