The habenula is a phylogenetically conserved epithalamic structure, which conveys negative information via inhibition of mesolimbic dopamine neurons. We have previously shown the expression of kisspeptin (Kiss1) in the habenula and its role in the modulation of fear responses in the zebrafish. In this study, to investigate whether habenular Kiss1 regulates fear responses via dopamine neurons in the zebrafish, Kiss1 peptides were intracranially administered close to the habenula, and the expression of dopamine-related genes (th1, th2 and dat) were examined in the brain using real-time PCR and dopamine levels using LC-MS/MS. th1 mRNA levels and dopamine levels were significantly increased in the telencephalon 24-h and 30-min after Kiss1 administration, respectively. In fish administered with Kiss1, expression of neural activity marker gene, npas4a and kiss1 gene were significantly decreased in the ventral habenula. Application of neural tracer into the median raphe, site of habenular Kiss1 neural terminal projections showed tracer-labelled projections in the medial forebrain bundle towards the telencephalon where dopamine neurons reside. These results suggest that Kiss1 negatively regulates its own neuronal activity in the ventral habenula via autocrine action. This, in turn affects neurons of the median raphe via interneurons, which project to the telencephalic dopaminergic neurons.
Kisspeptin, a neuropeptide encoded by the KISS1/Kiss1, and its cognate G protein-coupled receptor, GPR54 (kisspeptin receptor, Kiss-R), are critical for the control of reproduction in vertebrates. We have previously identified two kisspeptin genes (kiss1 and kiss2) in the zebrafish, of which kiss1 neurons are located in the habenula, which project to the median raphe. kiss2 neurons are located in the hypothalamic nucleus and send axonal projections to gonadotropin-releasing hormone neurons and regulate reproductive functions. However, the physiological significance of the Kiss1 expressed in the habenula remains unknown. Here we demonstrate the role of habenular Kiss1 in alarm substance (AS)-induced fear response in the zebrafish. We found that AS-evoked fear experience significantly reduces kiss1 and serotonin-related genes (plasmacytoma expressed transcript 1 and solute carrier family 6, member 4) in the zebrafish. Furthermore, Kiss1 administration suppressed the AS-evoked fear response. To further evaluate the role of Kiss1 in fear response, zebrafish Kiss1 peptide was conjugated to saporin (SAP) to selectively inactivate Kiss-R1-expressing neurons. The Kiss1-SAP injection significantly reduced Kiss1 immunoreactivity and c-fos mRNA in the habenula and the raphe compared with control. Furthermore, 3 d after Kiss1-SAP injection, the fish had a significantly reduced AS-evoked fear response. These findings provide an insight into the role of the habenular kisspeptin system in inhibiting fear.
The Kiss1/KISS1 gene has recently been implicated as a potent hypothalamic regulator of reproductive functions, in particular, the onset of puberty in mammals. In zebrafish (Danio rerio), there are two kiss1 homologues (kiss1 and kiss2) expressed in the brain: Kiss2-expressing neurons in the hypothalamic nuclei are considered potent regulators of reproduction, whereas the role of Kiss1-expressing neurons in the habenula remains unknown. We first analyzed the expression of kiss1 mRNA in a transgenic zebrafish, in which the habenula-interpeduncular nucleus (IPN) pathway is labelled with green fluorescent protein, and our application of a biocytin neural tracer into the habenula showed the presence of neuronal projections of Kiss1 neurons to the ventral IPN. Therefore, we speculated that kiss1 neurons might regulate the serotonergic system in the raphe. However, laser microdissection followed by real-time PCR revealed the expression of Kiss1 receptor (kissr1) mRNA in the habenula and the ventral IPN but not in the dorsal IPN or the serotonergic neurons in the raphe nuclei. Dual-fluorescent in situ hybridization revealed the coexpression of kiss1 and kissr1 mRNA in the habenula. Administration of Kiss1 significantly decreased the level of kiss1 mRNA (0.3- to 0.5-fold, P < 0.001), but the level of c-fos mRNA was increased (≈ 3-fold, P < 0.05) in the ventral habenula, suggesting that there is autocrine regulation of the kiss1 gene. Kiss1 administration significantly increased the c-fos mRNA levels in the raphe nuclei (2.5-fold, P < 0.001) and genes involved in the regulation of serotonin levels (pet1 and slc6a4a; 3.3- and 2.2-fold, P < 0.01). These findings suggest that the autocrine-regulated habenular Kiss1 neurons indirectly regulate the serotonergic system in the raphe nuclei through the IPN in the zebrafish.
The habenula is an evolutionarily conserved brain structure, which has recently been implicated in fear memory. In the zebrafish, kisspeptin (Kiss1) is predominantly expressed in the habenula, which has been implicated as a modulator of fear response. Hence, in the present study, we questioned whether Kiss1 has a role in fear memory and morphine-induced fear memory impairment using an odorant cue (alarm substances, AS)-induced fear avoidance paradigm in adult zebrafish, whereby the fear-conditioned memory can be assessed by a change of basal place preference (= avoidance) of fish due to AS-induced fear experience. Subsequently, to examine the possible role of Kiss1 neurons-serotonergic pathway, kiss1 mRNA and serotonin levels were measured. AS exposure triggered fear episodes and fear-conditioned place avoidance. Morphine treatment followed by AS exposure, significantly impaired fear memory with increased time-spent in AS-paired compartment. However, fish administered with Kiss1 (10-21 mol/fish) after morphine treatment had significantly lower kiss1 mRNA levels but retained fear memory. In addition, the total brain serotonin levels were significantly increased in AS- and Kiss1-treated groups as compared to control and morphine treated group. These results suggest that habenular Kiss1 might be involved in consolidation or retrieval of fear memory through the serotonin system.
The electrical stimulation of specific brain targets has been shown to induce striking antidepressant effects. Despite that recent data have indicated that cerebellum is involved in emotional regulation, the mechanisms by which stimulation improved mood-related behaviors in the cerebellum remained largely obscure. Here, we investigated the stimulation effects of the ventromedial prefrontal cortex (vmPFC), nucleus accumbens (NAc), and lateral habenular nucleus on the c-Fos neuronal activity in various deep cerebellar and vestibular nuclei using the unpredictable chronic mild stress (CMS) animal model of depression. Our results showed that stressed animals had increased number of c-Fos cells in the cerebellar dentate and fastigial nuclei, as well as in the spinal vestibular nucleus. To examine the stimulation effects, we found that vmPFC stimulation significantly decreased the c-Fos activity within the cerebellar fastigial nucleus as compared to the CMS sham. Similarly, there was also a reduction of c-Fos expression in the magnocellular part of the medial vestibular nucleus in vmPFC- and NAc core-stimulated animals when compared to the CMS sham. Correlational analyses showed that the anxiety measure of home-cage emergence escape latency was positively correlated with the c-Fos neuronal activity of the cerebellar fastigial and magnocellular and parvicellular parts of the interposed nuclei in CMS vmPFC-stimulated animals. Interestingly, there was a strong correlation among activation in these cerebellar nuclei, indicating that the antidepressant-like behaviors were possibly mediated by the vmPFC stimulation-induced remodeling within the forebrain-cerebellar neurocircuitry.
The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5-HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss-R1); using this primary antibody we found intense immunohistochemical labeling in the ventro-anterior corner of the MR (vaMR) but not in 5-HT neurons, suggesting the potential involvement of interneurons in 5-HT modulation by Kiss1. Double-fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5-HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5-HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons. The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5-HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5-HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5-HT system by the habenula-raphe pathway.