Hematopoietic stem cell transplantation (HCT) utilizing non-myeloablative (NMA) and reduced-intensity conditioning (RIC) regimens (collectively referred to as reduced-toxicity HCT, RT-HCT) has become a viable therapeutic option for patients with hematological malignancies who are ineligible for standard myeloablative conditioning transplantation (MA-HCT). RT-HCT has been shown to induce stable engraftment with low toxicity, and to produce similar overall and progression-free survival (PFS) when compared to MA-HCT in acute myeloid leukemia and myelodysplastic syndrome. The best results for RT-HCT have been reported for patients with disease that is in remission, indolent and chemosensitive, and with a strong graft-versus-malignancy effect. Chronic graft-versus-host disease seems to correlate with a lower relapse rate and better PFS. RT-HCT is inferior when performed in poor risk or advanced disease, due to high relapse rates. A search for novel strategies that includes the most appropriate conditioning regimens and post-transplant immunomodulation protocols with more intensive anti-malignancy activity but limited toxicity is in progress. This review provides an update on the results of clinical studies of RT-HCT, and discusses possible indications and investigative strategies for improving the clinical outcomes of RT-HCT for the major hematological malignancies.
Allogeneic hematopoietic stem cell transplantation (HSCT) remains a potential curative option for many patients with hematological malignancies (HM). However, the high rate of transplantation-related mortality (TRM) restricted the use of standard myeloablative HSCT to a minority of young and fit patients. Over the past few years, it has become evident that the alloreactivity of the immunocompetent donor cells mediated anti-malignancy effects independent of the action of high dose chemoradiotherapy. The use of reduced intensity conditioning (RIC) regimens has allowed a graft-versus-malignancy (GvM) effect to be exploited in patients who were previously ineligible for HSCT on the grounds of age and comorbidity. Retrospective analysis showed that RIC has been associated with lower TRM but a higher relapse rate leading to similar intermediate term overall and progression-free survivals when compared to standard myeloablative HSCT. However, the long term antitumor effect of this approach is less well established. Prospective studies are ongoing to define which patients might most benefit from reduced toxicity stem cell transplant (RT-SCT) and which transplant protocols are suitable for the different types of HM. The advent of RT-SCT permits the delivery of a potentially curative GvM effect to the majority of patients with HM whose outcome with conventional chemotherapy would be dismal. Remaining challenges include development of effective strategies to reduce relapse rates by augmenting GvM effects without increasing toxicity.
The aim of this study was to determine the prevalence of symptoms and problems in hospitalized hematological cancer patients. A cross-sectional design was carried out with 105 respondents in Ampang hospital in Kuala Lumpur. The European Organization for Research and Treatment of Cancer Quality Of Life questionnaire (EORTC QLQ-C30) was used. Patients with a minimum response of "a little" were defined as having a symptom/problem while patients with a response of "quite a bit" were classified as having a "severe symptom/problem". The four most prevalent symptoms/problems identified were fatigue, financial difficulties, reduced role function and reduced social function. Multiple myeloma patients (MM) were identified as having the most symptoms/problems.
Peripheral blood stem cells (PBSC) mobilised with growth factor with or without chemotherapeutic regimens, are used increasingly in both autologous and allogeneic transplantation. Previously, many PBSC harvests are used directly without ex vivo manipulation, and these PBSC have been shown to be contaminated with tumour cells, which may contribute to subsequent relapses post transplantation. Therefore, requirement for purging of malignant cells from the harvest has initiated the use of various methods to reduce tumour cell contamination of the graft by the positive selection of CD34+ progenitor cells or negative selection of tumour cells using other cell-specific antigens. We report here our local experience with the CliniMACS (magnetic-activated cell separation system) in eight adult patients with haematologic malignancies.