Displaying all 2 publications

Abstract:
Sort:
  1. Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM
    Antioxid Redox Signal, 2017 05 10;26(14):794-813.
    PMID: 27650096 DOI: 10.1089/ars.2016.6806
    SIGNIFICANCE: Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected.

    CRITICAL ISSUES: While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events.

    FUTURE DIRECTIONS: Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.

    Matched MeSH terms: Hemoglobin E/metabolism*
  2. George E, Faridah K, Sivagengei K
    Singapore Med J, 1988 Feb;29(1):45-7.
    PMID: 3406766
    83 Malays with HbE beta-thalassaemia who were not transfusion dependent were investigated. 79 persons showed no beta0 formation indicating the predominant gene in Malays with HbE beta-thalassaemia was beta0. HbF assays showed levels that were similar to transfusion dependent patients. Further studies are necessary to determine the presence of the alpha, (alpha+) gene Interacting with HbE and beta0 to produce the milder phenotype of HbE beta-thalassaemla.
    Matched MeSH terms: Hemoglobin E/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links