Displaying all 3 publications

Abstract:
Sort:
  1. Vadivelu J, Puthucheary SD, Navaratnam P
    Singapore Med J, 1992 Aug;33(4):375-7.
    PMID: 1411668
    The haemolysins produced by Aeromonas species were detected and compared by two assay methods--a modified blood agar plate assay and the rabbit erythrocyte haemolysin method. Both assays showed a high level of agreement (86%). The titres of the rabbit erythrocyte haemolysin assay correlated with the haemolytic zone diameter of the ox blood agar assay. In addition the agar haemolysin assay had simple media requirements, was easy to perform and results were well defined.
    Matched MeSH terms: Hemolysin Proteins/analysis*
  2. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Ng KP, et al.
    Trop Biomed, 2013 Dec;30(4):654-62.
    PMID: 24522136 MyJurnal
    This study was aimed at determining the phospholipase and haemolysin activity of Candida isolates in Malaysia. A total of 37 Candida clinical isolates representing seven species, Candida albicans (12), Candida tropicalis (8), Candida glabrata (4), Candida parapsilosis (1), Candida krusei (4), Candida orthopsilosis (1) and Candida rugosa (7) were tested. In vitro phospholipase activity was determined by using egg yolk plate assay whereas in vitro haemolysin activity was tested by using blood plate assay on sheep blood Sabouraud's dextrose agar (SDA) enriched with glucose. Phospholipase activity was detected in 75% (9 out of 12) of the C. albicans isolates. Among the 25 non- C. albicans Candida isolates, phospholipase activity was detected in only 24% of these isolates. The phospholipase activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.002). Haemolysin activity was detected in 100% of the C. albicans, C. tropicalis, C. glabrata, C. krusei, C. parapsilosis, and C. orthopsilosis isolates while 75% of the C. krusei isolates and 12.3% of the C. rugosa isolates showed haemolysin activity. The haemolytic activity of C. albicans was significantly higher than that of the non- C. albicans Candida isolates (P=0.0001).The findings in this study indicate that C. albicans isolates in Malaysia may possess greater virulence potential than the non-albicans species.
    Matched MeSH terms: Hemolysin Proteins/analysis*
  3. Iyer L, Vadivelu J, Puthucheary SD
    Epidemiol Infect, 2000 Aug;125(1):27-34.
    PMID: 11057956
    Eighty-four strains of Vibrio cholerae O1, O139 and non-O1/non-O139 from clinical and environmental sources were investigated for the presence of the toxin co-regulated pilus gene, tcpA, the virulence cassette genes ctxA, zot, ace and cep and also for their ability to elaborate haemolysin and protease. The ctxA and zot genes were detected using DNA-DNA hybridization while the ace, cep and tcpA genes were detected using PCR. Production of haemolysin and protease was detected using mammalian erythrocytes and an agar diffusion assay respectively. Analysis of their virulence profiles showed six different groups designated Type I to Type VI and the major distinguishing factor among these profiles was in the in vitro production of haemolysin and/or protease. Clinical O1, O139 and environmental O1 strains were similar with regard to presence of the virulence cassette genes. All environmental O1 strains with the exception of one were found to possess ctxA, zot and ace giving rise to the probability that these strains may actually be of clinical origin. One strain which had only cep but none of the toxin genes may be a true environmental isolate. The virulence cassette and colonization factor genes were absent in all non-O1/non-O139 environmental strains but production of both the haemolysin and protease was present, indicating that these may be putative virulence factors. These findings suggest that with regard to its pathogenic potential, only strains of the O1 and O139 serogroup that possess the tcpA gene which encodes the phage receptor, have the potential to acquire the CTX genetic element and become choleragenic.
    Matched MeSH terms: Hemolysin Proteins/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links