Displaying all 2 publications

Abstract:
Sort:
  1. Al Ali J, Vaine CA, Shah S, Campion L, Hakoum A, Supnet ML, et al.
    Mov Disord, 2021 01;36(1):206-215.
    PMID: 32975318 DOI: 10.1002/mds.28305
    BACKGROUND: X-linked dystonia-parkinsonism is a rare neurological disease endemic to the Philippines. Dystonic symptoms appear in males at the mean age of 40 years and progress to parkinsonism with degenerative pathology in the striatum. A retrotransposon inserted in intron 32 of the TAF1 gene leads to alternative splicing in the region and a reduction of the full-length mRNA transcript.

    OBJECTIVES: The objective of this study was to discover cell-based and biofluid-based biomarkers for X-linked dystonia-parkinsonism.

    METHODS: RNA from patient-derived neural progenitor cells and their secreted extracellular vesicles were used to screen for dysregulation of TAF1 expression. Droplet-digital polymerase chain reaction was used to quantify the expression of TAF1 mRNA fragments 5' and 3' to the retrotransposon insertion and the disease-specific splice variant TAF1-32i in whole-blood RNA. Plasma levels of neurofilament light chain were measured using single-molecule array.

    RESULTS: In neural progenitor cells and their extracellular vesicles, we confirmed that the TAF1-3'/5' ratio was lower in patient samples, whereas TAF1-32i expression is higher relative to controls. In whole-blood RNA, both TAF1-3'/5' ratio and TAF1-32i expression can differentiate patient (n = 44) from control samples (n = 18) with high accuracy. Neurofilament light chain plasma levels were significantly elevated in patients (n = 43) compared with both carriers (n = 16) and controls (n = 21), with area under the curve of 0.79.

    CONCLUSIONS: TAF1 dysregulation in blood serves as a disease-specific biomarker that could be used as a readout for monitoring therapies targeting TAF1 splicing. Neurofilament light chain could be used in monitoring neurodegeneration and disease progression in patients. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

    Matched MeSH terms: Histone Acetyltransferases/genetics
  2. Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, et al.
    Asian J Androl, 2016 10 18;19(6):647-654.
    PMID: 27748315 DOI: 10.4103/1008-682X.183379
    This study examined the effects of melatonin on leptin-induced changes in sperm parameters in adult rats. Five groups of Sprague-Dawley rats were treated with either leptin or leptin and melatonin or melatonin for 6 weeks. Leptin was given daily via the intraperitoneal route (60 μg kg-1 body weight) and melatonin was given in drinking water (10 mg kg-1 or 20 mg kg-1 body weight per day). Upon completion, sperm count, sperm morphology, 8-hydroxy-2-deoxyguanosine, Comet assay, TUNEL assay, gene expression profiles of antioxidant enzymes, respiratory chain reaction enzymes, DNA damage, and apoptosis genes were estimated. Data were analyzed using ANOVA. Sperm count was significantly lower whereas the fraction of sperm with abnormal morphology, the level of 8-hydroxy-2-deoxyguanosine, and sperm DNA fragmentation were significantly higher in rats treated with leptin only. Microarray analysis revealed significant upregulation of apoptosis-inducing factor, histone acetyl transferase, respiratory chain reaction enzyme, cell necrosis and DNA repair genes, and downregulation of antioxidant enzyme genes in leptin-treated rats. Real-time polymerase chain reaction showed significant decreases in glutathione peroxidase 1 expression with increases in the expression of apoptosis-inducing factor and histone acetyl transferase in leptin-treated rats. There was no change in the gene expression of caspase-3 (CASP-3). In conclusion, the adverse effects of leptin on sperm can be prevented by concurrent melatonin administration.
    Matched MeSH terms: Histone Acetyltransferases/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links