Affiliations 

  • 1 Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
  • 2 Sunshine Care Foundation, Roxas City, Philippines
  • 3 Department of Neurology, Jose R. Reyes Memorial Medical Center, Metro Manila, Philippines
Mov Disord, 2021 01;36(1):206-215.
PMID: 32975318 DOI: 10.1002/mds.28305

Abstract

BACKGROUND: X-linked dystonia-parkinsonism is a rare neurological disease endemic to the Philippines. Dystonic symptoms appear in males at the mean age of 40 years and progress to parkinsonism with degenerative pathology in the striatum. A retrotransposon inserted in intron 32 of the TAF1 gene leads to alternative splicing in the region and a reduction of the full-length mRNA transcript.

OBJECTIVES: The objective of this study was to discover cell-based and biofluid-based biomarkers for X-linked dystonia-parkinsonism.

METHODS: RNA from patient-derived neural progenitor cells and their secreted extracellular vesicles were used to screen for dysregulation of TAF1 expression. Droplet-digital polymerase chain reaction was used to quantify the expression of TAF1 mRNA fragments 5' and 3' to the retrotransposon insertion and the disease-specific splice variant TAF1-32i in whole-blood RNA. Plasma levels of neurofilament light chain were measured using single-molecule array.

RESULTS: In neural progenitor cells and their extracellular vesicles, we confirmed that the TAF1-3'/5' ratio was lower in patient samples, whereas TAF1-32i expression is higher relative to controls. In whole-blood RNA, both TAF1-3'/5' ratio and TAF1-32i expression can differentiate patient (n = 44) from control samples (n = 18) with high accuracy. Neurofilament light chain plasma levels were significantly elevated in patients (n = 43) compared with both carriers (n = 16) and controls (n = 21), with area under the curve of 0.79.

CONCLUSIONS: TAF1 dysregulation in blood serves as a disease-specific biomarker that could be used as a readout for monitoring therapies targeting TAF1 splicing. Neurofilament light chain could be used in monitoring neurodegeneration and disease progression in patients. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.