Oral squamous cell carcinoma (OSCC) is an aggressive disease accounting for more than 260,000 cancer cases diagnosed and 128,000 deaths worldwide. A large majority of cancer deaths result from cancers that have metastasized beyond the primary tumor. The relationship between genetic changes and clinical outcome can reflect the biological events that promote cancer's aggressive behavior, and these can serve as molecular markers for improved patient management and survival. To this end, epithelial-mesenchymal transition (EMT) is a major process that promotes tumor invasion and metastasis, making EMT-related proteins attractive diagnostic biomarkers and therapeutic targets. In this study, we used immunohistochemistry to study the expression of a panel of transcription factors (TWIST1, SNAI1/2, ZEB1 and ZEB2) and other genes intimately related to EMT (CDH1 and LAMC2) at the invasive tumor front of OSCC tissues. The association between the expression of these proteins and clinico-pathological parameters were examined with Pearson Chi-square and correlation with survival was analyzed using Kaplan Meier analysis. Our results demonstrate that there was a significant differential expression of CDH1, LAMC2, SNAI1/2 and TWIST1 between OSCC and normal oral mucosa (NOM). Specifically, CDH1 loss was significantly associated with Broder's grading, while diffused LAMC2 was similarly associated with non-cohesive pattern of invasion. Notably, co-expression of TWIST1 and ZEB2 in OSCC was significantly associated with poorer overall survival, particularly in patients without detectable lymph node metastasis. This study demonstrates that EMT-related proteins are differentially expressed in OSCC and that the co-expression of TWIST1 and ZEB2 could be of clinical value in identifying patients with poor survival for appropriate patient management.
Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesize that promoter hypermethylation of HOXA4 could be an epigenetic mechanism mediating IM resistance in CML patients. Thus a study was undertaken to investigate the promoter hypermethylation status of HOXA4 in CML patients on IM treatment and to determine its role in mediating resistance to IM. Genomic DNA was extracted from peripheral blood samples of 95 CML patients (38 good responders and 57 resistant) and 12 normal controls. All samples were bisulfite treated and analysed by methylation-specific high-resolution melt analysis. Compared to the good responders, the HOXA4 hypermethylation level was significantly higher (P = 0.002) in IM-resistant CML patients. On comparing the risk, HOXA4 hypermethylation was associated with a higher risk for IM resistance (OR 4.658; 95% CI, 1.673-12.971; P = 0.003). Thus, it is reasonable to suggest that promoter hypermethylation of HOXA4 gene could be an epigenetic mechanism mediating IM resistance in CML patients.