The author provides an account of the discovery of a previously undescribed disease of horses and a description of the studies involved in determining the aetiology of the disease. The causative virus, now named Hendra virus (HeV), is the reference virus for a proposed new genus within the virus family Paramyxoviridae. The virus is a lethal zoonotic agent able to cause natural disease in humans and horses and experimentally induced disease in cats, guinea-pigs and mice. The virus also naturally infects species of the family Megachiroptera, mainly subclinically, and such animals are the natural host of HeV. The virus appears to transmit readily between species of Megachiroptera, but not readily between horses under natural and experimental conditions, or from horses to humans. The method of transmission from bats to horses is not known. Three incidents of HeV disease in horses have been recorded in Australia--two in 1994 which caused the death of two humans and fifteen horses and one in 1999 which involved the death of a single horse. Hendra virus is related to Nipah virus, the virus that caused disease and mortality in humans, pigs, dogs and cats in Malaysia during 1998 and 1999.
Hendra virus (HeV) and Nipah virus (NiV) are the causative agents of emerging transboundary animal disease in pigs and horses. They also cause fatal disease in humans. NiV has a case fatality rate of 40 - 100%. In the initial NiV outbreak in Malaysia in 1999, about 1.1 million pigs had to be culled. The economic impact was estimated to be approximately US$450 million. Worldwide, HeV has caused more than 60 deaths in horses with 7 human cases and 4 deaths. Since the initial outbreak, HeV spillovers from Pteropus bats to horses and humans continue. This article presents a brief review on the currently available diagnostic methods for henipavirus infections, including advances achieved since the initial outbreak, and a gap analysis of areas needing improvement.
In Australia, infection of horses with the West Nile virus (WNV) or Murray Valley encephalitis virus (MVEV) occasionally results in severe neurological disease that cannot be clinically differentiated. Confirmatory serological tests to detect antibody specific for MVEV or WNV in horses are often hampered by cross-reactive antibodies induced to conserved epitopes on the envelope (E) protein. This study utilized bacterially expressed recombinant antigens derived from domain III of the E protein (rE-DIII) of MVEV and WNV, respectively, to determine whether these subunit antigens provided specific diagnostic markers of infection with these two viruses. When a panel of 130 serum samples, from horses with known flavivirus infection status, was tested in enzyme-linked immunosorbent assay (ELISA) using rE-DIII antigens, a differential diagnosis of MVEV or WNV was achieved for most samples. Time-point samples from horses exposed to flavivirus infection during the 2011 outbreak of equine encephalitis in south-eastern Australia also indicated that the rE-DIII antigens were capable of detecting and differentiating MVEV and WNV infection in convalescent sera with similar sensitivity and specificity to virus neutralization tests and blocking ELISAs. Overall, these results indicate that the rE-DIII is a suitable antigen for use in rapid immunoassays for confirming MVEV and WNV infections in horses in the Australian context and warrant further assessment on sensitive, high-throughput serological platforms such as multiplex immune assays.
Getah virus (GETV), a mosquito-borne alphavirus, is an emerging animal pathogen causing outbreaks among racehorses and pigs. Early detection of the GETV infection is essential for timely implementation of disease prevention and control interventions. Thus, a rapid and accurate nucleic acid detection method for GETV is highly needed. Here, two TaqMan minor groove binding (MGB) probe-based quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays were developed. The qRT-PCR primers and TaqMan MGB probe were designed based on the conserved region of nsP1 and nsP2 genes of 23 GETV genome sequences retrieved from GenBank. Only the qRT-PCR assay using nsP2-specific primers and probe detected all two Malaysia GETV strains (MM2021 and B254) without cross-reacting with other closely related arboviruses. The qRT-PCR assay detected as few as 10 copies of GETV RNA, but its detection limit at the 95% probability level was 63.25 GETV genome copies (probit analysis, P ≤ 0.05). Further validation of the qRT-PCR assay using 16 spiked simulated clinical specimens showed 100% for both sensitivity and specificity. In conclusion, the qRT-PCR assay developed in this study is useful for rapid, sensitive and specific detection and quantification of GETV.
The occurrence of Setaria digitata in a horse is reported for the first time in Malaysia. An 8-year-old Thoroughbred cross mare was referred to the University Veterinary Clinic with the primary complaint of corneal opacity and excessive eye discharge. After initial treatment with Terramycin eye ointment, corneal opacity cleared partially to reveal a moving thread-like cylindrical worm in the anterior chamber of the eye. The parasite was successfully removed surgically, and examination under the light microscope revealed that the isolated worm (length = 45 mm) was a 5th stage larva of S. digitata based on morphological criteria. Confirmation of the species of the worm was through molecular methods. The 12S rRNA gene was PCR-amplified, and the purified amplicon was directly sequenced. Phylogenetic analyses revealed that the isolated roundworm showed 100% sequence similarity with that of S. digitata in NCBI GenBank database (Accession no.: KY284626.1). This report is the first confirmed case of equine ocular setariasis by S. digitata in Malaysia. The current study provides evidence that S. digitata is an etiological agent of ocular infection and its presence in Malaysia.
The current study aimed at the investigating the potential use of phosphorylated neurofilament H (pNF-H) as a diagnostic biomarker for neurologic disorders in the horse. Paired serum and cerebrospinal fluid (CSF) samples (n=88) and serum only (n=30) were obtained from horses diagnosed with neurologic disorders and clinically healthy horses as control. The neurologic horses consisted of equine protozoal myeloencephalitis (EPM) (38 cases) and cervical vertebral malformation (CVM) (23 cases). Levels of pNF-H were determined using an ELISA. The correlation between CSF and serum concentrations of pNF-H was evaluated using Spearman's Rank test and the significance of the difference among the groups was assessed using a nonparametric test. Horses had higher pNF-H levels in the CSF than serum. Horses afflicted with EPM had significantly higher serum pNF-H levels in comparison to controls or CVM cases. The correlation between CSF and serum pNF-H levels was poor in both the whole study population and among subgroups of horses included in the study. There was significant association between the likelihood of EPM and the concentrations of pNF-H in either the serum or CSF. These data suggest that pNF-H could be detected in serum and CSF samples from neurologic and control horses. This study demonstrated that pNF-H levels in serum and CSF have the potential to provide objective information to help in the early diagnosis of horses afflicted with neurologic disorders.