Displaying all 9 publications

Abstract:
Sort:
  1. Chong Sue Kheng, Teoh Kim Chee, Marchette NJ, Garcia R, Rudnick A, Coughlan RF
    Aust. Vet. J., 1968 Jan;44(1):23-5.
    PMID: 5689238
    Matched MeSH terms: Horse Diseases/epidemiology*
  2. Westbury HA
    Rev. - Off. Int. Epizoot., 2000 Apr;19(1):151-9.
    PMID: 11189712
    The author provides an account of the discovery of a previously undescribed disease of horses and a description of the studies involved in determining the aetiology of the disease. The causative virus, now named Hendra virus (HeV), is the reference virus for a proposed new genus within the virus family Paramyxoviridae. The virus is a lethal zoonotic agent able to cause natural disease in humans and horses and experimentally induced disease in cats, guinea-pigs and mice. The virus also naturally infects species of the family Megachiroptera, mainly subclinically, and such animals are the natural host of HeV. The virus appears to transmit readily between species of Megachiroptera, but not readily between horses under natural and experimental conditions, or from horses to humans. The method of transmission from bats to horses is not known. Three incidents of HeV disease in horses have been recorded in Australia--two in 1994 which caused the death of two humans and fifteen horses and one in 1999 which involved the death of a single horse. Hendra virus is related to Nipah virus, the virus that caused disease and mortality in humans, pigs, dogs and cats in Malaysia during 1998 and 1999.
    Matched MeSH terms: Horse Diseases/epidemiology
  3. Mackenzie JS, Field HE
    PMID: 15119765
    Three newly recognized encephalitogenic zoonotic viruses spread from fruit bats of the genus Pteropus (order Chiroptera, suborder Megachiroptera) have been recognised over the past decade. These are: Hendra virus, formerly named equine morbillivirus, which was responsible for an outbreak of disease in horses and humans in Brisbane, Australia, in 1994; Australian bat lyssavirus, the cause of a severe acute encephalitis, in 1996; and Nipah virus, the cause of a major outbreak of encephalitis and pulmonary disease in domestic pigs and people in peninsula Malaysia in 1999. Hendra and Nipah viruses have been shown to be the first two members of a new genus, Henipavirus, in the family Paramyxoviridae, subfamily Paramyxovirinae, whereas Australian bat lyssavirus is closely related antigenically to classical rabies virus in the genus Lyssavirus, family Rhabdoviridae, although it can be distinguished on genetic grounds. Hendra and Nipah viruses have neurological and pneumonic tropisms. The first humans and equids with Hendra virus infections died from acute respiratory disease, whereas the second human patient died from an encephalitis. With Nipah virus, the predominant clinical syndrome in humans was encephalitic rather than respiratory, whereas in pigs, the infection was characterised by acute fever with respiratory involvement with or without neurological signs. Two human infections with Australian bat lyssavirus have been reported, the clinical signs of which were consistent with classical rabies infection and included a diffuse, non-suppurative encephalitis. Many important questions remain to be answered regarding modes of transmission, pathogenesis, and geographic range of these viruses.
    Matched MeSH terms: Horse Diseases/epidemiology
  4. Khan A, Mushtaq MH, Ahmad MUD, Nazir J, Farooqi SH, Khan A
    Virus Res, 2017 08 15;240:56-63.
    PMID: 28757141 DOI: 10.1016/j.virusres.2017.07.022
    BACKGROUND: A widespread epidemic of equine influenza (EI) occurred in nonvaccinated equine population across multiple districts in Khyber Pakhtunkhwa Province of Pakistan during 2015-2016.

    OBJECTIVES AND METHODS: An epidemiological surveillance study was conducted from Oct 2015 to April 2016 to investigate the outbreak. EI virus strains were isolated in embryonated eggs from suspected equines swab samples and were subjected to genome sequencing using M13 tagged segment specific primers. Phylogenetic analyses of the nucleotide sequences were concluded using Geneious. Haemagglutinin (HA), Neuraminidase (NA), Matrix (M) and nucleoprotein (NP) genes nucleotide and amino acid sequences of the isolated viruses were aligned with those of OIE recommended, FC-1, FC-2, and contemporary isolates of influenza A viruses from other species.

    RESULTS: HA and NA genes amino acid sequences were very similar to Tennessee/14 and Malaysia/15 of FC-1 and clustered with the contemporary isolates recently reported in the USA. Phylogenetic analysis showed that these viruses were mostly identical (with 99.6% and 97.4% nucleotide homology) to, and were reassortants containing chicken/Pakistan/14 (H7N3) and Canine/Beijing/10 (H3N2) like M and NP genes. Genetic analysis indicated that A/equine/Pakistan/16 viruses were most probably the result of several re-assortments between the co-circulating avian and equine viruses, and were genetically unlike the other equine viruses due to the presence of H7N3 or H3N2 like M and NP genes.

    CONCLUSION: Epidemiological data analysis indicated the potential chance of mixed, and management such as mixed farming system by keeping equine, canine and backyard poultry together in confined premises as the greater risk factors responsible for the re-assortments. Other factors might have contributed to the spread of the epidemic, including low awareness level, poor control of equine movements, and absence of border control disease strategies.

    Matched MeSH terms: Horse Diseases/epidemiology
  5. Elshafie EI, Sani RA, Hassan L, Sharma R, Bashir A, Abubakar IA
    Res Vet Sci, 2013 Apr;94(2):285-9.
    PMID: 23021152 DOI: 10.1016/j.rvsc.2012.09.004
    A cross-sectional study was designed to assess the seroprevalence and risk factors associated with Trypanosoma evansi infection among horses, using a total of 527 blood samples obtained from eight states in Peninsular Malaysia. A structured questionnaire was used to collect data on risk factors associated with T. evansi seroprevalence. The overall seroprevalence detected by card agglutination test for T. evansi (CATT/T. evansi) was 13.90% (73/527, CI: 11.2-17.1%). Female and exogenous horses showed a higher risk in association with the disease seroprevalence compared to other groups. The majority of the horse owners were not familiar with surra (85.30%). However, most of them were very cautious with the health of their animals. In conclusion, this study showed that T. evansi occurred in low frequency among horses in Peninsular Malaysia, and the good management system adopted by horse owners was probably responsible for the low T. evansi occurrence.
    Matched MeSH terms: Horse Diseases/epidemiology
  6. Luby SP, Gurley ES
    PMID: 22752412 DOI: 10.1007/82_2012_207
    All seven recognized human cases of Hendra virus (HeV) infection have occurred in Queensland, Australia. Recognized human infections have all resulted from a HeV infected horse that was unusually efficient in transmitting the virus and a person with a high exposure to infectious secretions. In the large outbreak in Malaysia where Nipah virus (NiV) was first identified, most human infections resulted from close contact with NiV infected pigs. Outbreak investigations in Bangladesh have identified drinking raw date palm sap as the most common pathway of NiV transmission from Pteropus bats to people, but person-to-person transmission of NiV has been repeatedly identified in Bangladesh and India. Although henipaviruses are not easily transmitted to people, these newly recognized, high mortality agents warrant continued scientific attention.
    Matched MeSH terms: Horse Diseases/epidemiology*
  7. Ivan A, Indrei LL
    Rev Med Chir Soc Med Nat Iasi, 2000 Apr-Jun;104(2):51-5.
    PMID: 12089991
    In the interval 1994-1999, in Australia, Malaysia and Singapore, epizootic and epidemiological episodes of meningoencephalitis and severe acute respiratory syndromes were reported. Highly lethal in horses, swine and humans, the episodes were proved to be caused by the "new" viruses Hendra (HeV) and Nipah (NiV). At the same time three "new" viral agents have been isolated: Lyssavirus, Menanglevirus and Tupaia paramyxovirus. The intense contemporary circulation of people, animals and food products together with changes in human ecosystem favor new relations between humans and the "natural reservoirs" of biologic agents with a pathogenic potential for domestic and peridomestic animals and humans.
    Matched MeSH terms: Horse Diseases/epidemiology
  8. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al.
    Transbound Emerg Dis, 2019 Sep;66(5):1884-1893.
    PMID: 31059176 DOI: 10.1111/tbed.13218
    Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
    Matched MeSH terms: Horse Diseases/epidemiology*
  9. Elshafie EI, Sani RA, Hassan L, Sharma R, Bashir A, Abubakar IA
    Trop Biomed, 2013 Sep;30(3):444-50.
    PMID: 24189674 MyJurnal
    Apart from occasional reports of clinical disease affecting horses, there is no information about Trypanosoma evansi in horses in Peninsula Malaysia. Thus, a cross-sectional study was conducted in eight states in Peninsula Malaysia to determine the active presence of T. evansi in horses. A total of 527 blood samples were obtained and examined by haematocrit centrifugation technique (HCT), Giemsa-stained thin blood smear (GSS), morphometric measurements, polymerase chain reaction (PCR) and cloning of PCR products. The results showed an overall parasitological prevalence of 0.57% (3/527, CI: 1.6-0.19%) with both HCT and GSS. Morphometric study revealed the mean total length of the trypanosomes including the free flagellum was 27.94 ± 2.63 μm. PCR successfully amplified a trypanosome specific 257 bp in 1.14% of samples (6/527, CI: 2.4-0.52%) and was confirmed by nucleotide sequences. The mean packed cell volume (PCV) for the positive cases detected by HCT was lower (23% ± 7.00) compared to the positive cases detected by PCR alone in the state of Terengganu (35% ± 4.73). In conclusion, this study showed T. evansi infection occurred in low frequency in horses in Peninsula Malaysia, and anaemia coincided with parasitaemic animals. PCR is considered as a sensitive diagnostic tool when parasitaemia is undetectable. The slight lengthier mean of parasite and anaemia may indicate a virulent strain of T. evansi circulating throughout the country. Thus, it's highly recommended to shed light on host-parasite relationship for better epidemiological understanding.
    Matched MeSH terms: Horse Diseases/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links