Displaying all 3 publications

Abstract:
Sort:
  1. Pascale JV, Wolf A, Kadish Y, Diegisser D, Kulaprathazhe MM, Yemane D, et al.
    Adv Pharmacol, 2023;97:229-255.
    PMID: 37236760 DOI: 10.1016/bs.apha.2023.01.002
    Vascular function is dynamically regulated and dependent on a bevy of cell types and factors that work in concert across the vasculature. The vasoactive eicosanoid, 20-Hydroxyeicosatetraenoic acid (20-HETE) is a key player in this system influencing the sensitivity of the vasculature to constrictor stimuli, regulating endothelial function, and influencing the renin angiotensin system (RAS), as well as being a driver of vascular remodeling independent of blood pressure elevations. Several of these bioactions are accomplished through the ligand-receptor pairing between 20-HETE and its high-affinity receptor, GPR75. This 20-HETE axis is at the root of various vascular pathologies and processes including ischemia induced angiogenesis, arteriogenesis, septic shock, hypertension, atherosclerosis, myocardial infarction and cardiometabolic diseases including diabetes and insulin resistance. Pharmacologically, several preclinical tools have been developed to disrupt the 20-HETE axis including 20-HETE synthesis inhibitors (DDMS and HET0016), synthetic 20-HETE agonist analogues (20-5,14-HEDE and 20-5,14-HEDGE) and 20-HETE receptor blockers (AAA and 20-SOLA). Systemic or cell-specific therapeutic targeting of the 20-HETE-GPR75 axis continues to be an invaluable approach as studies examine the molecular underpinnings activated by 20-HETE under various physiological settings. In particular, the development and characterization of 20-HETE receptor blockers look to be a promising new class of compounds that can provide a considerable benefit to patients suffering from these cardiovascular pathologies.
    Matched MeSH terms: Hydroxyeicosatetraenoic Acids/metabolism; Hydroxyeicosatetraenoic Acids/pharmacology
  2. Daphne Teh AL, Jayapalan JJ, Loke MF, Wan Abdul Kadir AJ, Subrayan V
    Exp Eye Res, 2021 10;211:108734.
    PMID: 34428458 DOI: 10.1016/j.exer.2021.108734
    This study aimed to investigate the metabolite differences between patients with keratoconus and control subjects and identify potential serum biomarkers for keratoconus using a non-targeted metabolomics approach. Venous blood samples were obtained from patients with keratoconus (n = 20) as well as from age-, gender- and race-matched control subjects (n = 20). Metabolites extracted from serum were separated and analyzed by liquid chromatography/quadrupole time-of-flight mass spectrometer. Processing of raw data and analysis of the data files was performed using Agilent Mass Hunter Qualitative software. The identified metabolites were subjected to a principal component and hierarchical cluster analysis. Appropriate statistical tests were used to analyze the metabolomic profiling data. Together, the analysis revealed that the dehydroepiandrosterone sulfate from the steroidal hormone synthesis pathway was significantly upregulated in patients with keratoconus (p 
    Matched MeSH terms: Hydroxyeicosatetraenoic Acids/blood*
  3. Sun Q, Yang J, Zhang M, Zhang Y, Ma H, Tran NT, et al.
    J Biol Chem, 2023 Dec;299(12):105463.
    PMID: 37977221 DOI: 10.1016/j.jbc.2023.105463
    Ferroptosis, characterized by iron-dependent cell death, has recently emerged as a critical defense mechanism against microbial infections. The present study aims to investigate the involvement of exosomes in the induction of ferroptosis and the inhibition of bacterial infection in crustaceans. Our findings provide compelling evidence for the pivotal role of exosomes in the immune response of crustaceans, wherein they facilitate intracellular iron accumulation and activate the ferroptotic pathways. Using RNA-seq and bioinformatic analysis, we demonstrate that cytochrome P450 (CYP) can effectively trigger ferroptosis. Moreover, by conducting an analysis of exosome cargo proteins, we have identified the participation of six-transmembrane epithelial antigen of prostate 4 in the regulation of hemocyte ferroptotic sensitivity. Subsequent functional investigations unveil that six-transmembrane epithelial antigen of prostate 4 enhances cellular Fe2+ levels, thereby triggering Fenton reactions and accelerating CYP-mediated lipid peroxidation, ultimately culminating in ferroptotic cell death. Additionally, the Fe2+-dependent CYP catalyzes the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid, which activates the peroxisome proliferator-activated receptor. Consequently, the downstream target of peroxisome proliferator-activated receptor, cluster of differentiation 36, promotes intracellular fatty acid accumulation, lipid peroxidation, and ferroptosis. These significant findings shed light on the immune defense mechanisms employed by crustaceans and provide potential strategies for combating bacterial infections in this species.
    Matched MeSH terms: Hydroxyeicosatetraenoic Acids
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links