Displaying all 7 publications

Abstract:
Sort:
  1. Waters MFR, Stanford JL
    Int. J. Lepr. Other Mycobact. Dis., 1985 Dec;53(4):546-53.
    PMID: 4086918
    A detailed account and definition is given of the previously inadequately described "giant reactions" to tuberculin occasionally seen in leprosy patients. The reaction is an accelerated and exaggerated response to species-specific antigens of Mycobacterium tuberculosis found in both PPD and New tuberculin. Our studies were performed in Malaysia, Uganda, Spain, and England. There was a significantly higher incidence of the phenomenon in Malaysia than in the other centers, but this may have been because there alone previously untreated lepromatous (LL and BL) patients were serially tested for up to three years after starting chemotherapy. Of the 28 patients exhibiting giant reactions, 27 occurred among lepromatous patients (24 LL and 3 BL), of which only 3 (1 LL and 2 BL) were untreated. One treated BL patient had developed, and one untreated BL patient was a family contact of, active tuberculosis. Giant reactions are uncommon in untreated and in very long-term treated LL patients, but may occur in up to a fifth of those receiving their first 1-3 years of chemotherapy. Although the mechanism is not yet understood, it appears to be a coincidence of delayed hypersensitivity of the tuberculin type and a less-delayed phenomenon of excessive local edema associated with local lymphadenopathy and short-lasting symptoms of malaise and pyrexia. It is suggested that the majority of giant reactions occur during a period of temporary lack of immune regulation associated with changing levels of antigenic load.
    Matched MeSH terms: Hypersensitivity, Delayed/immunology
  2. Kwa BH, Mak JW
    Trans R Soc Trop Med Hyg, 1980;74(4):522-7.
    PMID: 7445050
    The possible depression of cell-mediated immunity by long-term Brugia malayi infection in jirds (Meriones unguiculatus) was investigated. Different groups of infected jirds were sensitized with dinitrofluorobenzene, sheep red blood cells, Dirofilaria immitis adult antigens and B. malayi adult antigens. The 24-hour delayed type hypersensitivity skin response to testing with antigen was measured as an in vivo correlate of cell-mediated immunity. The delayed-type hypersensitivity responses to dinitrofluorobenzene, sheep red blood cells and D. immitis antigens were normal but the response to B. malayi antigens was significantly depressed, confirming that long-term B. malayi infection depresses cell-mediated immunity and that this depression is specific to B. malayi antigens.
    Matched MeSH terms: Hypersensitivity, Delayed/immunology
  3. Sosroseno W, Bird PS, Gemmell E, Seymour GJ
    Oral Dis, 2006 Jul;12(4):387-94.
    PMID: 16792724
    To determine whether oral tolerance with the oral bacterium Actinomyces viscosus was inducible in mice.
    Matched MeSH terms: Hypersensitivity, Delayed/immunology
  4. Fong EP, Bay BH
    Med Hypotheses, 2002 Apr;58(4):264-9.
    PMID: 12027517
    The aetiology of the keloid scar has not been completely elucidated. Numerous hypotheses have been proposed in the past to explain the unusual characteristics of the keloid scar. While we do know that there is excessive and ongoing collagen-deposition, the exact triggering stimulus is a subject of conjecture. We present some of our photographic records of keloids and electron microscopic findings of keloid edges and reiterate the sebum hypothesis. We also attempt to explain the features of keloids in the light of the present knowledge of immunology and cell biology.
    Matched MeSH terms: Hypersensitivity, Delayed/immunology
  5. Sosroseno W, Herminajeng E
    J Med Microbiol, 2002 Jul;51(7):581-8.
    PMID: 12132775
    The aim of this study was to determine the role of macrophages in the Actinobacillus actinomycetemcomitans-induced murine immune response. BALB/c mice were given carrageenan solution by intraperitoneal injection before immunisation with heat-killed A. actinomycetemcomitans. Mice immunised with antigens and phosphate-buffered saline served as positive and negative controls, respectively. One week after the last immunisation, the delayed-type hypersensitivity (DTH) response was assessed by measurement of footpad swelling. Serum IgG and IgM anti-A. actinomycetemcomitans antibody levels and culture supernate levels of interferon (IFN)-gamma were determined by ELISA. The diameter of abscess formation was determined every 5 days. Sham-immunised spleen cells were transferred to carrageenan-untreated recipients (groups A and B) and to carrageenan-treated recipients (group D). Antigen-immunised spleen cells were transferred to carrageenan-untreated (group C) and carrageenan-treated (group E) recipients. The carrageenan-treated recipients in groups F and G received macrophages from antigen- and sham-immunised mice respectively. All mice except those in group A were immunised with antigen 24 h after cell transfer. After 1 week, a partial suppression of DTH response, reduced levels of IFN-gamma, serum IgG and IgM anti-A. actinomycetemcomitans antibodies and delayed healing were seen in carrageenan-treated mice when compared with the positive control. The immune response to A. actinomycetemcomitans in groups A, B and D was lower than that in groups C and E. Healing of the lesion in the former groups was also delayed when compared with the latter groups. The immune response and the healing of the lesion could be partially restored in carrageenan-treated mice that received antigen-pulsed macrophages (group F) but not in those that received naive macrophages (group G). These results suggest that macrophages play a partial role in the induction of the murine immune response to A. actinomycetemcomitans.
    Matched MeSH terms: Hypersensitivity, Delayed/immunology
  6. Ilangkovan M, Jantan I, Bukhari SN
    Phytomedicine, 2016 Nov 15;23(12):1441-1450.
    PMID: 27765364 DOI: 10.1016/j.phymed.2016.08.002
    BACKGROUND: Phyllanthin found in many Phyllanthus species has various biochemical and pharmacological properties especially on its hepatoprotective effects. However, its effect on the immune system has not been well documented.

    PURPOSE: In the present study, phyllanthin isolated from Phyllanthus amarus was investigated for its immunosuppressive effects on various cellular and humoral immune responses in Balb/C mice.

    METHODS: Male mice were treated daily at 20, 40 and 100mg/kg of phyllanthin for 14 days by oral gavage. The effects of phyllanthin on cellular immune responses in treated /non treated mice were determined by measuring CD 11b/CD 18 integrin expression, phagocytosis, nitric oxide (NO) production, myeloperoxidase activity (MPO), T and B cells proliferation, lymphocyte phenotyping, serum cytokines production by activated T-cells and delayed type hypersensitivity (DTH). Its effects on humoral immune responses were evaluated by determining the serum levels of lysozyme and ceruloplasmin, and immunoglobulins (IgG and IgM).

    RESULTS: Phyllanthin dose-dependently inhibited CD11b/CD18 adhesion, the engulfment of E. coli by peritoneal macrophages molecules, NO and MPO release in treated mice. Phyllanthin caused significant and dose-dependent inhibition of T and B lymphocytes proliferation and down-regulation of the Th1 (IL-2 and IFN-γ) and Th2 (IL-4) cytokines. Phyllanthin at 100mg/kg caused a significant reduction in the percentage expression of CD4(+) and CD8(+) in splenocytes and the inhibition was comparable to that of cyclosporin A at 50mg/kg. At 100mg/kg, phyllanthin also dose-dependently exhibited strong inhibition on the sheep red blood cell (sRBC)-induced swelling rate of mice paw in DTH. Significant inhibition of serum levels of ceruloplasmin and lysozyme were observed in mice fed with higher doses (40 and 100mg/kg) of phyllanthin. Anti-sRBC immunoglobulins (IgM and IgG) antibody titer was down-regulated in immunized and phyllanthin-treated mice in a dose-dependent manner with maximum inhibition being observed at 100mg/kg.

    CONCLUSION: The strong inhibitory effects of phyllanthin on the cellular and humoral immune responses suggest that phyllanthin may be a good candidate for development into an effective immunosuppressive agent.

    Matched MeSH terms: Hypersensitivity, Delayed/immunology
  7. Sosroseno W, Bird PS, Gemmell E, Seymour GJ
    Oral Microbiol. Immunol., 2003 Oct;18(5):318-22.
    PMID: 12930525
    Mucosal presentation of Actinomyces viscosus results in antigen-specific systemic immune suppression, known as oral tolerance. The aim of the present study was to determine the mechanism by which this oral tolerance is induced. DBA/2 mice were gastrically immunized with A. viscosus. Serum, Peyer's patch (PP) and spleen cells were transferred to syngeneic recipients which were then systemically challenged with the sameiA. viscosus strain. To determine antigen-specificity of cells from gastrically immunized mice, recipients which received immune spleen cells were also challenged with Porphyromonas gingivalis. One week after the last systemic challenge, the delayed type hypersensitivity (DTH) response was determined by footpad swelling and the level of serum IgG, IgA and IgM antibodies to A. viscosus or P. gingivalis measured by an ELISA. No suppression of DTH response or of specific serum antibodies was found in recipients which received serum from gastrically immunized mice. Systemic immune suppression to A. viscosus was observed in recipients which had been transferred with PP cells obtained 2 days but not 4 and 6 days after gastric immunization with A. viscosus. Conversely, suppressed immune response could be seen in recipients transferred with spleen cells obtained 6 days after gastric immunization. The immune response to P. gingivalis remained unaltered in mice transferred with A. viscosus-gastrically immunized cells. The results of the present study suggest that oral tolerance induced by A. viscosus may be mediated by antigen-specific suppressor cells which originate in the PP and then migrate to the spleen.
    Matched MeSH terms: Hypersensitivity, Delayed/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links