Displaying 1 publication

Abstract:
Sort:
  1. Iranmanesh V, Ahmad SM, Adnan WA, Yussof S, Arigbabu OA, Malallah FL
    ScientificWorldJournal, 2014;2014:381469.
    PMID: 25133227 DOI: 10.1155/2014/381469
    One of the main difficulties in designing online signature verification (OSV) system is to find the most distinctive features with high discriminating capabilities for the verification, particularly, with regard to the high variability which is inherent in genuine handwritten signatures, coupled with the possibility of skilled forgeries having close resemblance to the original counterparts. In this paper, we proposed a systematic approach to online signature verification through the use of multilayer perceptron (MLP) on a subset of principal component analysis (PCA) features. The proposed approach illustrates a feature selection technique on the usually discarded information from PCA computation, which can be significant in attaining reduced error rates. The experiment is performed using 4000 signature samples from SIGMA database, which yielded a false acceptance rate (FAR) of 7.4% and a false rejection rate (FRR) of 6.4%.
    Matched MeSH terms: Identity Theft/prevention & control
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links