Transcriptional homeostasis relies on the balance between positive and negative regulation of gene transcription. Methylation of histone H3 lysine 9 (H3K9) is commonly correlated with gene repression. Here, we report that a euchromatic H3K9 methyltransferase, EHMT1, functions as a negative regulator in both the NF-κB- and type I interferon-mediated gene induction pathways. EHMT1 catalyzes H3K9 methylation at promoters of NF-κB target genes. Moreover, EHMT1 interacts with p50, and, surprisingly, p50 appears to repress the expression of type I interferon genes and genes activated by type I interferons by recruiting EHMT1 to catalyze H3K9 methylation at their promoter regions. Silencing the expression of EHMT1 by RNA interference enhances expression of a subset NF-κB-regulated genes, augments interferon production, and augments antiviral immunity.
Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.