Displaying all 2 publications

Abstract:
Sort:
  1. Mohamad Zuldin NN, Said IM, Mohd Noor N, Zainal Z, Jin Kiat C, Ismail I
    ScientificWorldJournal, 2013;2013:209434.
    PMID: 24065873 DOI: 10.1155/2013/209434
    This study aimed to determine the effects of different concentrations and combinations of the phytohormones 2,4-dichlorophenoxy acetic acid (2,4-D), kinetin, 6-benzylaminopurine (BAP), and 1-naphthaleneacetic acid (NAA) on callus induction and to demonstrate the role of elicitors and exogenous precursors on the production of mitragynine in a Mitragyna speciosa suspension culture. The best callus induction was achieved from petiole explants cultured on WPM that was supplemented with 4 mg L⁻¹ 2,4-D (70.83%). Calli were transferred to liquid media and agitated on rotary shakers to establish Mitragyna speciosa cell suspension cultures. The optimum settled cell volume was achieved in the presence of WPM that contained 3 mg L⁻¹ 2,4-D and 3% sucrose (9.47 ± 0.4667 mL). The treatment of cultures with different concentrations of yeast extract and salicylic acid for different inoculation periods revealed that the highest mitragynine content as determined by HPLC was achieved from the culture treated with 250 mg L⁻¹ yeast extract (9.275 ± 0.082 mg L⁻¹) that was harvested on day 6 of culturing; salicylic acid showed low mitragynine content in all concentrations used. Tryptophan and loganin were used as exogenous precursors; the highest level of mitragynine production was achieved in cultures treated with 3  μM tryptophan and harvested at 6 days (13.226 ± 1.98 mg L⁻¹).
    Matched MeSH terms: Iridoids/pharmacology
  2. Ling SK, Tanaka T, Kouno I
    Biol Pharm Bull, 2003 Mar;26(3):352-6.
    PMID: 12612446
    Enzyme inhibitory activities of 14 iridoids previously obtained from two Malaysian medicinal plants, Saprosma scortechinii and Rothmannia macrophylla, were evaluated in vitro using soybean lipoxygenase and bovine testis hyaluronidase. Most of the iridoids, including asperulosidic acid, paederosidic acid, and an epimeric mixture of gardenogenins A and B, did not show any effect on the enzyme activities, except for the bis-iridoids, which inhibited the lipoxygenase activity with their IC(50) values of approximately 1.3 times that of a known inhibitor, fisetin. Structural modification of asperulosidic acid and paederosidic acid through enzymatic hydrolysis by beta-glucosidase resulted in their inhibition towards the enzyme activities, and these activities were enhanced by the presence of some amino acids (lysine, leucine or glutamic acid) or ammonium acetate. Mixtures of gardenogenins A and B; isomers of non-glucosidic iridoids, incubated with amino acid or ammonium acetate did not show any inhibitory effect on the enzyme activities during the 6 h incubation period, except for lysine where spontaneous reaction between the iridoids and amino acid resulted in the inhibition of lipoxygenase activity. The results from these biomimetic reactions suggested that the iridoid aglycons and the intermediates formed by these reactive species could inhibit the enzyme activities, and thus substantiate previous reports that the formation of iridoidal aglycons is a prerequisite for the iridoid glycosides to demonstrate some of the biological activities. In addition, the results also indicated that it is worthwhile to further explore these intermediates as potential anti-inflammatory agents.
    Matched MeSH terms: Iridoids/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links