Displaying all 2 publications

Abstract:
Sort:
  1. Dhaliwal JS, Quek CK, Balasubramaniam T, Nasuruddin BA
    Asian Pac J Allergy Immunol, 1996 Dec;14(2):87-90.
    PMID: 9177821
    The aim of this project was to compare dual and tri-colour reagents for lymphocyte immunophenotyping. A total of 37 patient and normal specimens were immunophenotyped concurrently with the following mean values (% dual vs tri-colour): CD3 (69.4 vs 68.3) CD4 (24.0 vs 24.2) and CD19 (13.9 vs 12.6). A comparison of the results obtained using the paired t test showed that there were no significant differences for cells expressing CD3, CD4 and CD19. However, there was a significant difference in the NK (18.3 vs 16.3) cell component. A major advantage in using 3 colour immunophenotyping is the ability to analyse specimens that cannot be analysed using dual colour reagents due to debris or contamination of the gate with non-lymphocytic cells.
    Matched MeSH terms: Killer Cells, Natural/chemistry
  2. See JX, Chandramathi S, Abdulla MA, Vadivelu J, Shankar EM
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005702.
    PMID: 28820897 DOI: 10.1371/journal.pntd.0005702
    BACKGROUND: Melioidosis is a neglected tropical disease endemic across South East Asia and Northern Australia. The etiological agent, Burkholderia pseudomallei (B.pseudomallei), is a Gram-negative, rod-shaped, motile bacterium residing in the soil and muddy water across endemic regions of the tropical world. The bacterium is known to cause persistent infections by remaining latent within host cells for prolonged duration. Reactivation of the recrudescent disease often occurs in elders whose immunity wanes. Moreover, recurrence rates in melioidosis patients can be up to ~13% despite appropriate antibiotic therapy, suggestive of bacterial persistence and inefficacy of antibiotic regimens. The mechanisms behind bacterial persistence in the host remain unclear, and hence understanding host immunity during persistent B. pseudomallei infections may help designing potential immunotherapy.

    METHODOLOGY/PRINCIPAL FINDINGS: A persistent infection was generated using a small-colony variant (SCV) and a wild-type (WT) B. pseudomallei in BALB/c mice via intranasal administration. Infected mice that survived for >60 days were sacrificed. Lungs, livers, spleens, and peripheral blood mononuclear cells were harvested for experimental investigations. Histopathological changes of organs were observed in the infected mice, suggestive of successful establishment of persistent infections. Moreover, natural killer (NK) cell frequency was increased in SCV- and WT-infected mice. We observed programmed death-1 (PD-1) upregulation on B cells of SCV- and WT-infected mice. Interestingly, PD-1 upregulation was only observed on NK cells and monocytes of SCV-infected mice. In contrast, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) downregulation was seen on NK cells of WT-infected mice, and on monocytes of SCV- and WT-infected mice.

    CONCLUSIONS/SIGNIFICANCE: The SCV and the WT of B. pseudomallei distinctly upregulated PD-1 expression on B cells, NK cells, and monocytes to dampen host immunity, which likely facilitates bacterial persistence. PD-1/PD-L1 pathway appears to play an important role in the persistence of B. pseudomallei in the host.

    Matched MeSH terms: Killer Cells, Natural/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links