Displaying all 5 publications

Abstract:
Sort:
  1. Mohajer S, Mat Taha R, Mohajer M, Khorasani Esmaeili A
    ScientificWorldJournal, 2014;2014:680356.
    PMID: 25045740 DOI: 10.1155/2014/680356
    To explore the potential of in vitro rapid regeneration, three varieties (Golpaygan-181, Orumieh-1763, and Gorgan-1601) of sainfoin (Onobrychis viciifolia Scop. syn. Onobrychis sativa L.) were evaluated. For the first time, an encapsulation protocol was established from somatic embryogenic callus in torpedo and cotyledonary stages to create artificial seeds. Callus derived from different concentrations of Kinetin (0-2.0 mg L(-1)) and Indole-3-acetic acid (0-2.0 mg L(-1)) was coated with sodium alginate and subsequently cultured either in Murashige and Skoog (MS) medium or in soil substrate. Adventitious shoots from synthetic beads developed into rooting in full and half strength MS medium supplemented with various concentrations of auxin and cytokinin. Prolonged water conservation of black and red soils (1:1) had the highest rate of survival plantlets in the acclimatization process. Diverse resistance techniques in Onobrychis viciifolia were evaluated when the plants were subjected to water deficiency. Higher frequency of epicuticular waxes was observed in in vivo leaves compared to in vitro leaves. Jagged trichomes nonsecreting glands covered by spines were only observed in the lower leaf side. Ultimately, stomata indices were 0.127 (abaxial), 0.188 (adaxial) in in vivo and 0.121 (abaxial), 0.201 (adaxial) in in vitro leaves.
    Matched MeSH terms: Kinetin/pharmacology
  2. Subramaniam S, Sundarasekar J, Sahgal G, Murugaiyah V
    ScientificWorldJournal, 2014;2014:408306.
    PMID: 24895650 DOI: 10.1155/2014/408306
    The Hymenocallis littoralis, an ornamental and medicinal plant, had been traditionally used for wound healing. In the present study, an analytical method using HPLC with ultraviolet detection was developed for the quantification of lycorine in the extracts of different parts of wild plant and tissue culture samples of H. littoralis. The separation was achieved using a reversed-phase column. The method was found to be accurate, repeatable, and sensitive for the quantification of minute amount of lycorine present in the samples. The highest lycorine content was found in the bulb extract (2.54 ± 0.02 μg/mg) whereas the least was in the root extract (0.71 ± 0.02 μg/mg) of the wild plants. Few callus culture samples had high content of lycorine, comparable to that of wild plants. The results showed that plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D) alone at 4.5 μM (2.58 ± 0.38 μg/mg) or a combination of 2,4-D at 9.00 μM with 4.5 μM of 6-benzylaminopurine (BAP), were the optimum concentrations for the production of high lycorine (2.45 ± 0.15 μg/mg) content in callus culture. The present analytical method could be of value for routine quantification of lycorine in the tissue culture production and standardization of the raw material or extracts of H. littoralis.
    Matched MeSH terms: Kinetin/pharmacology
  3. Mohamad Zuldin NN, Said IM, Mohd Noor N, Zainal Z, Jin Kiat C, Ismail I
    ScientificWorldJournal, 2013;2013:209434.
    PMID: 24065873 DOI: 10.1155/2013/209434
    This study aimed to determine the effects of different concentrations and combinations of the phytohormones 2,4-dichlorophenoxy acetic acid (2,4-D), kinetin, 6-benzylaminopurine (BAP), and 1-naphthaleneacetic acid (NAA) on callus induction and to demonstrate the role of elicitors and exogenous precursors on the production of mitragynine in a Mitragyna speciosa suspension culture. The best callus induction was achieved from petiole explants cultured on WPM that was supplemented with 4 mg L⁻¹ 2,4-D (70.83%). Calli were transferred to liquid media and agitated on rotary shakers to establish Mitragyna speciosa cell suspension cultures. The optimum settled cell volume was achieved in the presence of WPM that contained 3 mg L⁻¹ 2,4-D and 3% sucrose (9.47 ± 0.4667 mL). The treatment of cultures with different concentrations of yeast extract and salicylic acid for different inoculation periods revealed that the highest mitragynine content as determined by HPLC was achieved from the culture treated with 250 mg L⁻¹ yeast extract (9.275 ± 0.082 mg L⁻¹) that was harvested on day 6 of culturing; salicylic acid showed low mitragynine content in all concentrations used. Tryptophan and loganin were used as exogenous precursors; the highest level of mitragynine production was achieved in cultures treated with 3  μM tryptophan and harvested at 6 days (13.226 ± 1.98 mg L⁻¹).
    Matched MeSH terms: Kinetin/pharmacology
  4. Sivakumar P, Law YS, Ho CL, Harikrishna JA
    Acta. Biol. Hung., 2010 Sep;61(3):313-21.
    PMID: 20724277 DOI: 10.1556/ABiol.61.2010.3.7
    An efficient in vitro plant regeneration system was established for elite, recalcitrant Malaysian indica rice, Oryza sativa L. CV. MR 219 using mature seeds as explant on Murashige and Skoog and Chu N6 media containing 2,4-dichlorophenoxy acetic acid and kinetin either alone or in different combinations. L-proline, casein hydrolysate and L-glutamine were added to callus induction media for enhancement of embryogenic callus induction. The highest frequency of friable callus induction (84%) was observed in N6 medium containing 2.5 mg l(-1) 2,4-dichlorophenoxy acetic acid, 0.2 mg l(-1) kinetin, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate, 20 mg l(-1) L-glutamine and 30 g l(-1) sucrose under culture in continuous lighting conditions. The maximum regeneration frequency (71%) was observed, when 30-day-old N6 friable calli were cultured on MS medium supplemented with 3 mg l(-1) 6-benzyl aminopurine, 1 mg l(-1) naphthalene acetic acid, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate and 3% maltose. Developed shoots were rooted in half strength MS medium supplemented with 2% sucrose and were successfully transplanted to soil with 95% survival. This protocol may be used for other recalcitrant indica rice genotypes and to transfer desirable genes in to Malaysian indica rice cultivar MR219 for crop improvement.
    Matched MeSH terms: Kinetin/pharmacology
  5. Ravanfar SA, Aziz MA, Saud HM, Abdullah JO
    Curr Genet, 2015 Nov;61(4):653-63.
    PMID: 25986972 DOI: 10.1007/s00294-015-0494-x
    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.
    Matched MeSH terms: Kinetin/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links