Displaying all 4 publications

Abstract:
Sort:
  1. Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT
    J Microbiol Biotechnol, 2012 Jul;22(7):981-9.
    PMID: 22580318
    This study aimed to evaluate the effects of electroporation on the cell growth, cholesterol removal, and adherence abilities of L. acidophilus BT 1088 and their subsequent passages. The growth of electroporated parent cells increased (P<0.05) by 4.49-21.25% compared with that of the control. This may be attributed to the alteration of cellular membrane. However, growth of first, second, and third passages of treated cells was comparable with that of the control, which may be attributed to the resealing of transient pores on the cellular membrane. Electroporation also increased (P<0.05) assimilation of cholesterol by treated parent cells (>185.40%) and first passage (>21.72%) compared with that of the control. Meanwhile, incorporation of cholesterol into the cellular membrane was also increased (P<0.05) in the treated parent cells (>108.33%) and first passage (>26.67%), accompanied by increased ratio of cholesterol:phospholipids (C:P) in these passages. Such increased ratio was also supported by increased enrichment of cholesterol in the hydrophilic heads, hydrophobic tails, and the interface regions of the membrane phospholipids of both parent and first passage cells compared with that of the control. However, such traits were not inherited by the subsequent second and third passages. Parent cells also showed decreased intestinal adherence ability (P<0.05; decreased by 1.45%) compared with that of the control, without inheritance by subsequent passages of treated cells. Our data suggest that electoporation could be a potential physical treatment to enhance the cholesterol removal ability of lactobacilli that was inherited by the first passage of treated cells without affecting their intestinal adherence ability.
    Matched MeSH terms: Lactobacillus acidophilus/metabolism*
  2. Teh SS, Ahmad R, Wan-Abdullah WN, Liong MT
    J Agric Food Chem, 2009 Nov 11;57(21):10187-98.
    PMID: 19821558 DOI: 10.1021/jf902003a
    The objective of this study was to evaluate agricultural wastes as immobilizers for probiotics in liquid foods, such as soy milk. Probiotic strains were initially evaluated for acid and bile tolerance and the ability to produce alpha-galactosidase. Rinds of durian, mangosteen, and jackfruit were dried, ground, and sterilized prior to immobilization of selected strains ( Lactobacillus acidophilus FTDC 1331, L. acidophilus FTDC 2631, L. acidophilus FTDC 2333, L. acidophilus FTDC 1733, and Lactobacillus bulgaricus FTCC 0411). Immobilized cells were inoculated into soy milk, and growth properties were evaluated over 168 h at 37 degrees C. Soy milk containing free cells without agrowastes was used as the control. Immobilized probiotics showed increased growth, greater reduction of stachyose, sucrose, and glucose, higher production of lactic and acetic acids, and lower pH in soy milk compared to the control. The results illustrated that agrowastes could be used for the immobilization of probiotics with enhanced growth, utilization of substrates, and production of organic acids.
    Matched MeSH terms: Lactobacillus acidophilus/metabolism
  3. Siew-Wai L, Zi-Ni T, Karim AA, Hani NM, Rosma A
    J Agric Food Chem, 2010 Feb 24;58(4):2274-8.
    PMID: 20121195 DOI: 10.1021/jf903820s
    The in vitro fermentability of sago (Metroxylon sagu) resistant starch type III (RS(3)) by selected probiotic bacteria was investigated. Sago RS(3) with 12% RS content was prepared by enzymatic debranching of native sago starch with pullulanase enzyme, followed by autoclaving, cooling, and annealing. The fermentation of sago RS(3) by L. acidophilus FTCC 0291, L. bulgaricus FTCC 0411, L. casei FTCC 0442, and B. bifidum BB12 was investigated by observing the bacterial growth, carbohydrate consumption profiles, pH changes, and total short chain fatty acids (SCFA) produced in the fermentation media. Comparisons were made with commercial fructo-oligosaccharide (FOS), Hi-maize 1043, and Hi-maize 240. Submerged fermentations were conducted in 30 mL glass vials for 24 h at 37 degrees C in an oven without shaking. The results indicated that fermentation of sago RS(3) significantly (P < 0.05) yielded the highest count of Lactobacillus sp. accompanied by the largest reduction in pH of the medium. Sago RS(3) was significantly the most consumed substrate compared to FOS and Hi-maizes.
    Matched MeSH terms: Lactobacillus acidophilus/metabolism
  4. Moeini H, Rahim RA, Omar AR, Shafee N, Yusoff K
    Appl Microbiol Biotechnol, 2011 Apr;90(1):77-88.
    PMID: 21181148 DOI: 10.1007/s00253-010-3050-0
    The AcmA binding domains of Lactococcus lactis were used to display the VP1 protein of chicken anemia virus (CAV) on Lactobacillus acidophilus. One and two repeats of the cell wall binding domain of acmA gene were amplified from L. lactis MG1363 genome and then inserted into co-expression vector, pBudCE4.1. The VP1 gene of CAV was then fused to the acmA sequences and the VP2 gene was cloned into the second MCS of the same vector before transformation into Escherichia coli. The expressed recombinant proteins were purified using a His-tag affinity column and mixed with a culture of L. acidophilus. Whole cell ELISA and immunofluorescence assay showed the binding of the recombinant VP1 protein on the surface of the bacterial cells. The lactobacilli cells carrying the CAV VP1 protein were used to immunize specific pathogen-free chickens through the oral route. A moderate level of neutralizing antibody to CAV was detected in the serum of the immunized chickens. A VP1-specific proliferative response was observed in splenocytes of the chickens after oral immunization. The vaccinated groups also showed increased levels of Th1 cytokines interleukin (IL)-2, IL-12, and IFN-γ. These observations suggest that L. acidophilus can be used in the delivery of vaccines to chickens.
    Matched MeSH terms: Lactobacillus acidophilus/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links