Displaying all 3 publications

Abstract:
Sort:
  1. Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT
    Ultrason Sonochem, 2012 Jul;19(4):901-8.
    PMID: 22265020 DOI: 10.1016/j.ultsonch.2011.12.018
    The aim of this study was to evaluate the effect of ultrasound on the intestinal adherence ability, cell growth, and cholesterol removal ability of parent cells and subsequent passages of Lactobacillus fermentum FTDC 1311. Ultrasound significantly decreased the intestinal adherence ability of treated parent cells compared to that of the control by 11.32% (P<0.05), which may be due to the protein denaturation upon local heating. Growth of treated parent cells also decreased by 4.45% (P<0.05) immediately upon ultrasound (0-4h) and showed an increase (P<0.05) in the viability by 2.18-2.34% during the later stage of fermentation (12-20 h) compared to that of the control. In addition, an increase (P<0.05) in assimilation of cholesterol (>9.74%) was also observed for treated parent cells compared to that of the control, accompanied by increased (P<0.05) incorporation of cholesterol into the cellular membrane. This was supported by the increased ratio of membrane cholesterol:phospholipids (C:P), saturation of cholesterol in the apolar regions, upper phospholipids regions, and polar regions of membrane phospholipids of parent cells compared to that of the control (P<0.05). However, such traits were not inherited by the subsequent passages of treated cells (first, second, and third passages). Our data suggested that ultrasound treatment could be used to improve cholesterol removal ability of parent cells without inducing permanent damage/defects on treated cells of subsequent passages.
    Matched MeSH terms: Lactobacillus fermentum/chemistry*
  2. Ong JS, Liu YW, Liong MT, Choi SB, Tsai YC, Low WY
    Genomics, 2020 11;112(6):3915-3924.
    PMID: 32629096 DOI: 10.1016/j.ygeno.2020.06.052
    The role of microbiota in gut-brain communication has led to the development of probiotics promoting brain health. Here we report a genomic study of a Lactobacillus fermentum PS150 and its patented bioactive protein, elongation factor Tu (EF-Tu), which is associated with cognitive improvement in rats. The L. fermentum PS150 circular chromosome is 2,238,401 bp and it consists of 2281 genes. Chromosome comparisons with other L. fermentum strains highlighted a cluster of glycosyltransferases as potential candidate probiotic factors besides EF-Tu. Molecular evolutionary analyses on EF-Tu genes (tuf) in 235 bacteria species revealed one to three copies of the gene per genome. Seven tuf pseudogenes were found and three species only possessed pseudogenes, which is an unprecedented finding. Protein variability analysis of EF-Tu showed five highly variable residues (40 K, 41G, 42 L, 44 K, and 46E) on the protein surface, which warrant further investigation regarding their potential roles as binding sites.
    Matched MeSH terms: Lactobacillus fermentum/chemistry*
  3. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    Ultrason Sonochem, 2012 Jul;19(4):890-900.
    PMID: 22305107 DOI: 10.1016/j.ultsonch.2012.01.003
    This study aimed to evaluate the effects of ultrasound on Lactobacillus fermentum BT 8633 in parent and subsequent passages based on their growth and isoflavone bioconversion activities in biotin-supplemented soymilk. The treated cells were also assessed for impact of ultrasound on probiotic properties. The growth of ultrasonicated parent cells increased (P<0.05) by 3.23-9.14% compared to that of the control during fermentation in biotin-soymilk. This was also associated with enhanced intracellular and extracellular (8.4-17.0% and 16.7-49.2%, respectively; P<0.05) β-glucosidase specific activity, leading to increased bioconversion of isoflavones glucosides to aglycones during fermentation in biotin-soymilk compared to that of the control (P<0.05). Such traits may be credited to the reversible permeabilized membrane of ultrasonicated parent cells that have facilitated the transport of molecules across the membrane. The growing characteristics of first, second and third passage of treated cells in biotin-soymilk were similar (P>0.05) to that of the control, where their growth, enzyme and isoflavone bioconversion activities (P>0.05) were comparable. This may be attributed to the temporary permeabilization in the membrane of treated cells. Ultrasound affected probiotic properties of parent L. fermentum, by reducing tolerance ability towards acid (pH 2) and bile; lowering inhibitory activities against selected pathogens and reducing adhesion ability compared to that of the control (P<0.05). The first, second and third passage of treated cells did not exhibit such traits, with the exception of their bile tolerance ability which was inherited to the first passage (P<0.05). Our results suggested that ultrasound could be used to increase bioactivity of biotin-soymilk via fermentation by probiotic L. fermentum FTDC 8633 for the development of functional food.
    Matched MeSH terms: Lactobacillus fermentum/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links