Displaying all 15 publications

Abstract:
Sort:
  1. Wayah SB, Philip K
    Microb Cell Fact, 2018 Aug 13;17(1):125.
    PMID: 30103750 DOI: 10.1186/s12934-018-0972-1
    BACKGROUND: Emergence of antibiotic resistance and growing consumer trend towards foods containing biopreservatives stimulated the search for alternative antimicrobials. This research is aimed at characterizing, investigating the mechanism of action, scale up optimization and evaluating the biopreservative potential of a bacteriocin from Lactobacillus fermentum.

    RESULTS: Fermencin SA715 is a novel, broad-spectrum, non-pore-forming and cell wall-associated bacteriocin isolated from L. fermentum GA715 of goat milk origin. A combination of hydrophobic interaction chromatography, solid-phase extraction and reversed-phase HPLC was necessary for purification of the bacteriocin to homogeneity. It has a molecular weight of 1792.537 Da as revealed by MALDI-TOF mass spectrometry. Fermencin SA715 is potent at micromolar concentration, possesses high thermal and pH stability and inactivated by proteolytic enzymes thereby revealing its proteinaceous nature. Biomass accumulation and production of fermencin SA715 was optimum in a newly synthesized growth medium. Fermencin SA715 did not occur in the absence of manganese(II) sulphate. Tween 80, ascorbic acid, sodium citrate and magnesium sulphate enhanced the production of fermencin SA715. Sucrose is the preferred carbon source for growth and bacteriocin production. Sodium chloride concentration higher than 1% suppressed growth and production of fermencin SA715. Optimum bacteriocin production occurred at 37 °C and pH 6-7. Scale up of fermencin SA715 production involved batch fermentation in a bioreactor at a constant pH of 6.5 which resulted in enhanced production. Fermencin SA715 doubled the shelf life and improved the microbiological safety of fresh banana. Bacteriocin application followed by refrigeration tripled the shell life of banana.

    CONCLUSIONS: This study reveals the huge potential of fermencin SA715 as a future biopreservative for bananas and reveals other interesting characteristics which can be exploited in the preservation of other foods. Furthermore insights on the factors influencing the production of fermencin SA715 have been revealed and optimized condition for its production has been established facilitating future commercial production.

    Matched MeSH terms: Lactobacillus fermentum/metabolism*
  2. Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT
    Ultrason Sonochem, 2012 Jul;19(4):901-8.
    PMID: 22265020 DOI: 10.1016/j.ultsonch.2011.12.018
    The aim of this study was to evaluate the effect of ultrasound on the intestinal adherence ability, cell growth, and cholesterol removal ability of parent cells and subsequent passages of Lactobacillus fermentum FTDC 1311. Ultrasound significantly decreased the intestinal adherence ability of treated parent cells compared to that of the control by 11.32% (P<0.05), which may be due to the protein denaturation upon local heating. Growth of treated parent cells also decreased by 4.45% (P<0.05) immediately upon ultrasound (0-4h) and showed an increase (P<0.05) in the viability by 2.18-2.34% during the later stage of fermentation (12-20 h) compared to that of the control. In addition, an increase (P<0.05) in assimilation of cholesterol (>9.74%) was also observed for treated parent cells compared to that of the control, accompanied by increased (P<0.05) incorporation of cholesterol into the cellular membrane. This was supported by the increased ratio of membrane cholesterol:phospholipids (C:P), saturation of cholesterol in the apolar regions, upper phospholipids regions, and polar regions of membrane phospholipids of parent cells compared to that of the control (P<0.05). However, such traits were not inherited by the subsequent passages of treated cells (first, second, and third passages). Our data suggested that ultrasound treatment could be used to improve cholesterol removal ability of parent cells without inducing permanent damage/defects on treated cells of subsequent passages.
    Matched MeSH terms: Lactobacillus fermentum/cytology; Lactobacillus fermentum/growth & development*; Lactobacillus fermentum/chemistry*
  3. Li Y, Zhang Y, Dong L, Li Y, Liu Y, Liu Y, et al.
    Food Chem, 2024 Mar 30;437(Pt 1):137834.
    PMID: 37897817 DOI: 10.1016/j.foodchem.2023.137834
    In this study, strains producing feruloyl esterase were screened by Oxford Cup clear zones method and by evaluating the ability to decompose hydroxycinnamoyl esters. The strain was identified by 16S rDNA molecular biology. The contents of dietary fiber, reducing sugar, water-extractable arabinoxylans, phytic acid, total phenolics, total flavonoid, phenolic compounds composition, microstructure and antioxidant activity in bran before and after fermentation were studied. Eight strains producing feruloyl esterase were screened, among which strain P1 had the strongest ability to decompose hydroxycinnamoyl esters. The strain was identified and named L. fermentum NB02. Compared with unfermented bran, fermented bran exhibited higher contents of soluble dietary fiber, reducing sugar, water-extractable arabinoxylans, total phenolics, total flavonoid, and lower insoluble dietary fiber and phytic acid content. The dense surface structure of bran was destroyed, forming a porous structure. The release of phenolic compounds increased significantly. L. fermentum NB02 fermentation improved the antioxidant capacity of bran.
    Matched MeSH terms: Lactobacillus fermentum*
  4. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    Ultrason Sonochem, 2012 Jul;19(4):890-900.
    PMID: 22305107 DOI: 10.1016/j.ultsonch.2012.01.003
    This study aimed to evaluate the effects of ultrasound on Lactobacillus fermentum BT 8633 in parent and subsequent passages based on their growth and isoflavone bioconversion activities in biotin-supplemented soymilk. The treated cells were also assessed for impact of ultrasound on probiotic properties. The growth of ultrasonicated parent cells increased (P<0.05) by 3.23-9.14% compared to that of the control during fermentation in biotin-soymilk. This was also associated with enhanced intracellular and extracellular (8.4-17.0% and 16.7-49.2%, respectively; P<0.05) β-glucosidase specific activity, leading to increased bioconversion of isoflavones glucosides to aglycones during fermentation in biotin-soymilk compared to that of the control (P<0.05). Such traits may be credited to the reversible permeabilized membrane of ultrasonicated parent cells that have facilitated the transport of molecules across the membrane. The growing characteristics of first, second and third passage of treated cells in biotin-soymilk were similar (P>0.05) to that of the control, where their growth, enzyme and isoflavone bioconversion activities (P>0.05) were comparable. This may be attributed to the temporary permeabilization in the membrane of treated cells. Ultrasound affected probiotic properties of parent L. fermentum, by reducing tolerance ability towards acid (pH 2) and bile; lowering inhibitory activities against selected pathogens and reducing adhesion ability compared to that of the control (P<0.05). The first, second and third passage of treated cells did not exhibit such traits, with the exception of their bile tolerance ability which was inherited to the first passage (P<0.05). Our results suggested that ultrasound could be used to increase bioactivity of biotin-soymilk via fermentation by probiotic L. fermentum FTDC 8633 for the development of functional food.
    Matched MeSH terms: Lactobacillus fermentum/growth & development*; Lactobacillus fermentum/metabolism; Lactobacillus fermentum/chemistry
  5. Meersman E, Steensels J, Mathawan M, Wittocx PJ, Saels V, Struyf N, et al.
    PLoS One, 2013;8(12):e81559.
    PMID: 24358116 DOI: 10.1371/journal.pone.0081559
    The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.
    Matched MeSH terms: Lactobacillus fermentum/isolation & purification*
  6. Ong JS, Liu YW, Liong MT, Choi SB, Tsai YC, Low WY
    Genomics, 2020 11;112(6):3915-3924.
    PMID: 32629096 DOI: 10.1016/j.ygeno.2020.06.052
    The role of microbiota in gut-brain communication has led to the development of probiotics promoting brain health. Here we report a genomic study of a Lactobacillus fermentum PS150 and its patented bioactive protein, elongation factor Tu (EF-Tu), which is associated with cognitive improvement in rats. The L. fermentum PS150 circular chromosome is 2,238,401 bp and it consists of 2281 genes. Chromosome comparisons with other L. fermentum strains highlighted a cluster of glycosyltransferases as potential candidate probiotic factors besides EF-Tu. Molecular evolutionary analyses on EF-Tu genes (tuf) in 235 bacteria species revealed one to three copies of the gene per genome. Seven tuf pseudogenes were found and three species only possessed pseudogenes, which is an unprecedented finding. Protein variability analysis of EF-Tu showed five highly variable residues (40 K, 41G, 42 L, 44 K, and 46E) on the protein surface, which warrant further investigation regarding their potential roles as binding sites.
    Matched MeSH terms: Lactobacillus fermentum/chemistry*
  7. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    J Microbiol Biotechnol, 2012 Jul;22(7):947-59.
    PMID: 22580314
    This study was aimed at an evaluation of the potential inheritance of electroporation effects on Lactobacillus fermentum BT 8219 through to three subsequent subcultures, based on their growth, isoflavone bioconversion activities, and probiotic properties, in biotin-supplemented soymilk. Electroporation was seen to cause cell death immediately after treatment, followed by higher growth than the control during fermentation in biotin-soymilk (P<0.05). This was associated with enhanced intracellular and extracellular beta-glucosidase specific activity, leading to increased bioconversion of isoflavone glucosides to aglycones (P<0.05). The growing characteristics, enzyme, and isoflavone bioconversion activities of the first, second, and third subcultures of treated cells in biotin-soymilk were similar to the control (P>0.05). Electroporation affected the probiotic properties of parent L. fermentum BT 8219, by reducing its tolerance towards acid (pH 2) and bile, lowering its inhibitory activities against selected pathogens, and reducing its ability for adhesion, when compared with the control (P<0.05). The first, second, and third subcultures of the treated cells showed comparable traits with that of the control (P>0.05), with the exception of their bile tolerance ability, which was inherited to the treated cells of the first and second subcultures (P<0.05). Our results suggest that electroporation could be used to increase the bioactivity of biotin-soymilk via fermentation with probiotic L. fermentum BT 8219, with a view towards the development of functional foods.
    Matched MeSH terms: Lactobacillus fermentum/metabolism*; Lactobacillus fermentum/physiology*
  8. Wan Mohtar Wan Yusoff, Hutari A, Jaseem WS, Aidil Abdul Hamid
    Sains Malaysiana, 2011;40:1115-1122.
    A total of eight strains of Lactobacillus and two strains of Salmonella were isolated from free-range Malaysian chickens intestine. Evaluation based on in vitro studies included aggregation, co-aggregation, growth with bile salts, tolerance to acidic pH, and inhibitory activity were carried out. The isolated Lactobacillus were Lactobacillus fermentum IA, Lactobacillus fermentum IB, Lactobacillus fermentum IC, Lactobacillus fermentum ID, Lactobacillus salivarius subsp. salicinus IE, Lactobacillus salivarius subsp. salicinus IF, Lactobacillus salivarius subsp. salivarius IG, and Lactobacillus spp. IH. The corresponding isolated Salmonella were Salmonella spp. 3B21 and Salmonella spp. 1A12. The ability of aggregation and also tolerance to pH 2.5 are found in Lactobacillus fermentum ID, Lactobacillus salivarius subsp. salicinus IF, Lactobacillus salivarius subsp. salivarius IG, and Lactobacillus spp. IH. The isolate most resistance to 1% bile salts is Lactobacillus fermentum ID but observed to be weak in inhibitory activity against Salmonella spp. The best co-aggregation and strongest inhibitory activity against Salmonella spp. was observed in Lactobacillus salivarius subsp. salivarius IG. Despite being not so resistant in the presence of bile salts 0.5 and 1% (w/v), the lag time in the presence of bile salts 0.3% (w/v) of Lactobacillus salivarius subsp. salivarius IG and also for Lactobacillus spp. IH are the shortest. Based on good aggregation properties, the best co-aggregation, tolerance to acidic pH 2.5 and bile salts 0.3% (w/v) and strongest inhibitory activity against Salmonella spp., Lactobacillus salivarius subsp. salivarius IG comes out as the best candidate as probiotic for chicken.
    Matched MeSH terms: Lactobacillus fermentum
  9. Khosravi Y, Dieye Y, Loke MF, Goh KL, Vadivelu J
    PLoS One, 2014;9(11):e112214.
    PMID: 25386948 DOI: 10.1371/journal.pone.0112214
    Helicobacter pylori (H. pylori) is a major gastric pathogen that has been associated with humans for more than 60,000 years. H. pylori causes different gastric diseases including dyspepsia, ulcers and gastric cancers. Disease development depends on several factors including the infecting H. pylori strain, environmental and host factors. Another factor that might influence H. pylori colonization and diseases is the gastric microbiota that was overlooked for long because of the belief that human stomach was a hostile environment that cannot support microbial life. Once established, H. pylori mainly resides in the gastric mucosa and interacts with the resident bacteria. How these interactions impact on H. pylori-caused diseases has been poorly studied in human. In this study, we analyzed the interactions between H. pylori and two bacteria, Streptococcus mitis and Lactobacillus fermentum that are present in the stomach of both healthy and gastric disease human patients. We have found that S. mitis produced and released one or more diffusible factors that induce growth inhibition and coccoid conversion of H. pylori cells. In contrast, both H. pylori and L. fermentum secreted factors that promote survival of S. mitis during the stationary phase of growth. Using a metabolomics approach, we identified compounds that might be responsible for the conversion of H. pylori from spiral to coccoid cells. This study provide evidences that gastric bacteria influences H. pylori physiology and therefore possibly the diseases this bacterium causes.
    Matched MeSH terms: Lactobacillus fermentum/physiology*
  10. Mohamad Fakri E, Lim S, Musa N, Hazizul Hasan M, Adam A, Ramasamy K
    Sains Malaysiana, 2016;45:1289-1297.
    This study examined lactic acid bacteria (LAB)-fermented soymilk for their ability in hydrolyzing glucosides to aglycones
    and corresponding antioxidant capacity and memory enhancing effect. Twelve LAB isolated from Malaysian fermented food
    and milk products were incubated in commercially available soymilk for 48 h. Generally, soymilk supported LAB growth
    and significantly increased (p<0.05) conversion to bioactive aglycone by 2.1-6.5 fold when compared to unfermented
    soymilk. Lactobacillus fermentum LAB 9- fermented soymilk, in particular, was presented with increased total phenolic
    content (+10%) as opposed to unfermented soymilk. Lactobacilli (LAB 10-12)- and pediococci (LAB 5)-fermented soymilk
    elicited maximal DPPH radical-scavenging activity. LAB 1, 7, 8, 9 and 12 exhibited significantly higher (p<0.05) ferrous
    ion chelating activity when compared to control. Interestingly, LAB 9 had significantly improved memory deficit (p<0.05)
    in LPS-challenged mice. LAB-enriched nutritional value of soymilk could be useful against oxidative stress and memory
    deficit.
    Matched MeSH terms: Lactobacillus fermentum
  11. Lye HS, Kato T, Low WY, Taylor TD, Prakash T, Lew LC, et al.
    J Biotechnol, 2017 Sep 19.
    PMID: 28935567 DOI: 10.1016/j.jbiotec.2017.09.007
    In this study, hypercholesterolemic mice fed with Lactobacillus fermentum FTDC 8312 after a seven-week feeding trial showed a reduction in serum total cholesterol (TC) levels, accompanied by a decrease in serum low-density lipoprotein cholesterol (LDL-C) levels, an increase in serum high-density lipoprotein cholesterol (HDL-C) levels, and a decreased ratio of apoB100:apoA1 when compared to those fed with control or a type strain, L. fermentum JCM 1173. These have contributed to a decrease in atherogenic indices (TC/HDL-C) of mice on the FTDC 8312 diet. Serum triglyceride (TG) levels of mice fed with FTDC 8312 and JCM 1173 were comparable to those of the controls. A decreased ratio of cholesterol and phospholipids (C/P) was also observed for mice fed with FTDC 8312, leading to a decreased number of spur red blood cells (RBC) formation in mice. Additionally, there was an increase in fecal TC, TG, and total bile acid levels in mice on FTDC 8312 diet compared to those with JCM 1173 and controls. The administration of FTDC 8312 also altered the gut microbiota population such as an increase in the members of genera Akkermansia and Oscillospira, affecting lipid metabolism and fecal bile excretion in the mice. Overall, we demonstrated that FTDC 8312 exerted a cholesterol lowering effect that may be attributed to gut microbiota modulation.
    Matched MeSH terms: Lactobacillus fermentum
  12. Muhialdin BJ, Hassan Z, Sadon SKh
    J Food Sci, 2011 Sep;76(7):M493-9.
    PMID: 21806613 DOI: 10.1111/j.1750-3841.2011.02292.x
    In the search for new preservatives from natural resources to replace or to reduce the use of chemical preservatives 4 strains of lactic acid bacteria (LAB) were selected to be evaluated for their antifungal activity on selected foods. The supernatants of the selected strains delayed the growth of fungi for 23 to 40 d at 4 °C and 5 to 6 d at 20 and 30 °C in tomato puree, 19 to 29 d at 4 °C and 6 to 12 d at 20 and 30 °C in processed cheese, and 27 to 30 d at 4 °C and 12 to 24 d at 20 and 30 °C in commercial bread. The shelf life of bread with added LAB cells or their supernatants were longer than normal bread. This study demonstrates that Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, L. pentosus G004, and L. paracasi D5 either the cells or their supernatants could be used as biopreservative in bakery products and other processed foods.
    Matched MeSH terms: Lactobacillus fermentum/metabolism
  13. Ranjith FH, Muhialdin BJ, Yusof NL, Mohammed NK, Miskandar MH, Hussin ASM
    Plants (Basel), 2021 Feb 03;10(2).
    PMID: 33546183 DOI: 10.3390/plants10020285
    BACKGROUND: the antagonism activity of lactic acid bacteria metabolites has the potential to prevent fungal growth on mango.

    METHODS: the potential of developing natural disinfectant while using watermelon rinds (WR), pineapple (PP), orange peels (OP), palm kernel cake (PKC), and rice bran (RB), via lacto-fermentation was investigated. The obtained lactic acid bacteria (LAB) metabolites were then employed and the in vitro antifungal activity toward five spoilage fungi of mango was tested through liquid and solid systems. Besides, the effect of the produced disinfectant on the fungal growth inhibition and quality of mango was investigated.

    RESULTS: the strains Lactobacillus plantarum ATCC8014 and Lactobacillus fermentum ATCC9338 growing in the substrates PKC and PP exhibited significantly higher in vitro antifungal activity against Colletotrichum gloeosporioides and Botryodiplodia theobromae as compared to other tested LAB strains and substrates. The in-situ results demonstrated that mango samples that were treated with the disinfectant produced from PKC fermented with L. plantarum and L. fermentum had the lowest disease incidence and disease severity index after 16 days shelf life, as well as the lowest conidial concentration. Furthermore, PKC that was fermented by L. fermentum highly maintained the quality of the mango.

    CONCLUSIONS: lactic acid fermentation of PKC by L. fermentum demonstrated a high potential for use as a natural disinfectant to control C. gloeosporioides and B. theobromae on mango.

    Matched MeSH terms: Lactobacillus fermentum
  14. Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau AS, Lee BK, et al.
    J Appl Microbiol, 2021 Apr;130(4):1307-1322.
    PMID: 32638482 DOI: 10.1111/jam.14776
    AIM: The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system.

    METHODS AND RESULTS: The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P fermentum DR9 demonstrated improved expression of SOD in bone and muscle compared to the aged rats (P fermentum DR9 increased the mRNA expression of IGF-1; L. helveticus OFS 1515 and L. fermentum DR9 reduced the expression of MyoD, in contrast to the aged controls (P fermentum DR9 on ageing muscle were believed to be contributed by increased AMPK-α2 expression. Among the osteoclastogenesis genes studied, TNF-α expression was highly elevated in tibia of aged rats, while all three probiotics strains ameliorated the expression. Lactobacillus fermentum DR9 also reduced the expression of IL-6 and TRAP in tibia when compared to the aged rats (P fermentum DR9 appeared to be the strongest strain in modulation of musculoskeletal health during ageing.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study demonstrated the protective effects of the bacteria on muscle and bone through antioxidative and anti-inflammatory actions. Therefore, L. fermentum DR9 may serve as a promising targeted anti-ageing therapy.

    Matched MeSH terms: Lactobacillus fermentum/physiology*
  15. Hor YY, Ooi CH, Khoo BY, Choi SB, Seeni A, Shamsuddin S, et al.
    J Med Food, 2019 Jan;22(1):1-13.
    PMID: 30592688 DOI: 10.1089/jmf.2018.4229
    Aging is an inevitable and ubiquitous progress that affects all living organisms. A total of 18 strains of lactic acid bacteria (LAB) were evaluated on the activation of adenosine monophosphate-activated protein kinase (AMPK), an intracellular energy sensor mediating lifespan extension. The cell-free supernatant (CFS) of Lactobacillus fermentum DR9 (LF-DR9), Lactobacillus paracasei OFS 0291 (LP-0291), and Lactobacillus helveticus OFS 1515 (LH-1515) showed the highest activation of AMPK and was further evaluated. The phosphorylation of AMPK by these three LAB strains was more evident in U2OS and C2C12 cells, compared to the other cell lines and control (P 
    Matched MeSH terms: Lactobacillus fermentum
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links