Affiliations 

  • 1 Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
  • 2 Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia. kphil@um.edu.my
Microb Cell Fact, 2018 Aug 13;17(1):125.
PMID: 30103750 DOI: 10.1186/s12934-018-0972-1

Abstract

BACKGROUND: Emergence of antibiotic resistance and growing consumer trend towards foods containing biopreservatives stimulated the search for alternative antimicrobials. This research is aimed at characterizing, investigating the mechanism of action, scale up optimization and evaluating the biopreservative potential of a bacteriocin from Lactobacillus fermentum.

RESULTS: Fermencin SA715 is a novel, broad-spectrum, non-pore-forming and cell wall-associated bacteriocin isolated from L. fermentum GA715 of goat milk origin. A combination of hydrophobic interaction chromatography, solid-phase extraction and reversed-phase HPLC was necessary for purification of the bacteriocin to homogeneity. It has a molecular weight of 1792.537 Da as revealed by MALDI-TOF mass spectrometry. Fermencin SA715 is potent at micromolar concentration, possesses high thermal and pH stability and inactivated by proteolytic enzymes thereby revealing its proteinaceous nature. Biomass accumulation and production of fermencin SA715 was optimum in a newly synthesized growth medium. Fermencin SA715 did not occur in the absence of manganese(II) sulphate. Tween 80, ascorbic acid, sodium citrate and magnesium sulphate enhanced the production of fermencin SA715. Sucrose is the preferred carbon source for growth and bacteriocin production. Sodium chloride concentration higher than 1% suppressed growth and production of fermencin SA715. Optimum bacteriocin production occurred at 37 °C and pH 6-7. Scale up of fermencin SA715 production involved batch fermentation in a bioreactor at a constant pH of 6.5 which resulted in enhanced production. Fermencin SA715 doubled the shelf life and improved the microbiological safety of fresh banana. Bacteriocin application followed by refrigeration tripled the shell life of banana.

CONCLUSIONS: This study reveals the huge potential of fermencin SA715 as a future biopreservative for bananas and reveals other interesting characteristics which can be exploited in the preservation of other foods. Furthermore insights on the factors influencing the production of fermencin SA715 have been revealed and optimized condition for its production has been established facilitating future commercial production.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.