Displaying all 4 publications

Abstract:
Sort:
  1. Tee SK, Ong TL, Aris A, See SML, Leong HY, Khalid MKNM, et al.
    Seizure, 2019 Apr;67:78-81.
    PMID: 30947044 DOI: 10.1016/j.seizure.2019.03.012
    Matched MeSH terms: Lafora Disease/diagnosis*; Lafora Disease/genetics*
  2. Srikumar PS, Rohini K
    Appl Biochem Biotechnol, 2013 Oct;171(4):874-82.
    PMID: 23904258 DOI: 10.1007/s12010-013-0393-x
    Lafora disease (LD) is an autosomal recessive, progressive form of myoclonus epilepsy which affects worldwide. LD occurs mainly in countries like southern Europe, northern Africa, South India, and in the Middle East. LD occurs with its onset mainly in teenagers and leads to decline and death within 2 to 10 years. The genes EPM2A and EPM2B are commonly involved in 90 % of LD cases. EPM2A codes for protein laforin which contains an amino terminal carbohydrate binding module (CBM) belonging to the CBM20 family and a carboxy terminal dual specificity phosphatase domain. Mutations in laforin are found to abolish glycogen binding and have been reported in wet lab methods. In order to investigate on structural insights on laforin mutation K81A, we performed molecular dynamics (MD) simulation studies for native and mutant protein. MD simulation results showed loss of stability due to mutation K87A which confirmed the structural reason for conformational changes observed in laforin. The conformational change of mutant laforin was confirmed by analysis using root mean square deviation, root mean square fluctuation, solvent accessibility surface area, radius of gyration, hydrogen bond, and principle component analysis. Our results identified that the flexibility of K87A mutated laforin structure, with replacement of acidic amino acid to aliphatic amino acid in functional CBM domain, have more impact in abolishing glycogen binding that favors LD.
    Matched MeSH terms: Lafora Disease/genetics*; Lafora Disease/metabolism*
  3. Singh S, Ganesh S
    J Hum Genet, 2012 May;57(5):283-5.
    PMID: 22456482 DOI: 10.1038/jhg.2012.29
    Lafora progressive myoclonus epilepsy, also known as Lafora disease (LD), is the most severe and fatal form of progressive myoclonus epilepsy with its typical onset during the late childhood or early adolescence. LD is characterized by recurrent epileptic seizures and progressive decline in intellectual function. LD can be caused by defects in any of the two known genes and the clinical features of these two genetic groups are almost identical. The past one decade has witnessed considerable success in identifying the LD genes, their mutations, the cellular functions of gene products and on molecular basis of LD. Here, we briefly review the current literature on the phenotype variations, on possible presence of genetic modifiers, and candidate modifiers as targets for therapeutic interventions in LD.
    Matched MeSH terms: Lafora Disease/genetics*; Lafora Disease/physiopathology*
  4. Kundap UP, Paudel YN, Shaikh MF
    Pharmaceuticals (Basel), 2020 May 26;13(6).
    PMID: 32466498 DOI: 10.3390/ph13060106
    Epilepsy is a serious neurological disorder affecting around 70 million people globally and is characterized by spontaneous recurrent seizures. Recent evidence indicates that dysfunction in metabolic processes can lead to the alteration of neuronal and network excitability, thereby contributing to epileptogenesis. Developing a suitable animal model that can recapitulate all the clinical phenotypes of human metabolic epilepsy (ME) is crucial yet challenging. The specific environment of many symptoms as well as the primary state of the applicable neurobiology, genetics, and lack of valid biomarkers/diagnostic tests are the key factors that hinder the process of developing a suitable animal model. The present systematic review summarizes the current state of available animal models of metabolic dysfunction associated with epileptic disorders. A systematic search was performed by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model. A range of electronic databases, including google scholar, Springer, PubMed, ScienceDirect, and Scopus, were scanned between January 2000 and April 2020. Based on the selection criteria, 23 eligible articles were chosen and are discussed in the current review. Critical analysis of the selected literature delineated several available approaches that have been modeled into metabolic epilepsy and pointed out several drawbacks associated with the currently available models. The result describes available models of metabolic dysfunction associated with epileptic disorder, such as mitochondrial respiration deficits, Lafora disease (LD) model-altered glycogen metabolism, causing epilepsy, glucose transporter 1 (GLUT1) deficiency, adiponectin responsive seizures, phospholipid dysfunction, glutaric aciduria, mitochondrial disorders, pyruvate dehydrogenase (PDH) α-subunit gene (PDHA1), pyridoxine dependent epilepsy (PDE), BCL2-associated agonist of cell death (BAD), Kcna1 knock out (KO), and long noncoding RNAs (lncRNA) cancer susceptibility candidate 2 (lncRNA CASC2). Finally, the review highlights certain focus areas that may increase the possibilities of developing more suitable animal models and underscores the importance of the rationalization of animal models and evaluation methods for studying ME. The review also suggests the pressing need of developing precise robust animal models and evaluation methods for investigating ME.
    Matched MeSH terms: Lafora Disease
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links