Displaying all 2 publications

Abstract:
Sort:
  1. Safari MJ, Wong JH, Kadir KA, Thorpe NK, Cutajar DL, Petasecca M, et al.
    Eur Radiol, 2016 Jan;26(1):79-86.
    PMID: 26002131 DOI: 10.1007/s00330-015-3818-9
    OBJECTIVES: To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures.

    METHODS: Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures.

    RESULTS: The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R(2)) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AKL: 0.93, AKF: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions.

    CONCLUSIONS: The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose.

    KEY POINTS: Real-time patient dose monitoring helps interventionalists to monitor doses. Strong correlation was observed between kerma-area-product and measured eye doses. Radiation dose at left outer canthus was higher than at left eyelid.

    Matched MeSH terms: Lens, Crystalline/radiation effects*
  2. Wong JHD, Anem LEA, Tan S, Tan SK, Ng KH
    Phys Med, 2019 Dec;68:47-51.
    PMID: 31739145 DOI: 10.1016/j.ejmp.2019.11.007
    OBJECTIVE: This study measured the radiation exposure of the eye lens of medical personnel performing fluoroscopy and interventional procedures at the Sarawak General Hospital in Kuching, Sarawak, Malaysia. This study was the first in Malaysia to utilise in vivo radiation measurement relatively near the eye lens.

    METHODS: 41 medical personnel performing 79 procedures were monitored for their eye lens exposure using the NanoDot™ optically-stimulated luminescence dosimeters (OSLD) taped to the outer canthus of their eyes. The air-kerma area product (KAP), fluoroscopy time (FT) and number of procedure runs were also recorded.

    RESULTS: KAP, FT and number of runs were strongly correlated. However, only weak to moderate correlations were observed between these parameters with the measured eye lens doses. The average median equivalent eye lens dose was 0.052 mSv (ranging from 0.0155 to 0.672 mSv). The eye lens doses of primary operators were found to be significantly higher than their assistants due to the closer proximity to the patient and X-ray tube. The left eye lens of the operators received the highest amount of radiation due to their habitual positioning towards the radiation source.

    CONCLUSION: KAP and FT were not useful in predicting the equivalent eye lens dose exposure in interventional radiological procedures. Direct in vivo measurements were needed to provide a better estimate of the eye lens doses received by medical personnel during these procedures. This study highlights the importance of using direct measurement, such as OSLDs, instead of just indirect factors to monitor dose in the eye lens in radiological procedures.

    Matched MeSH terms: Lens, Crystalline/radiation effects*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links