Displaying all 3 publications

Abstract:
Sort:
  1. Shaharir SS, Mohamed Said MS, Mohd R, Abdul Cader R, Mustafar R, Abdul Rahman R
    PLoS One, 2019;14(9):e0222343.
    PMID: 31539383 DOI: 10.1371/journal.pone.0222343
    Flare of Systemic Lupus Erythematosus (SLE) may occur during pregnancy and puerperium. We studied the prevalence and factors associated with SLE relapse during pregnancy and post-partum period in a multi-ethnic SLE cohort. Consecutive SLE patients who attended the outpatient clinic were reviewed for previous history of pregnancies in our institution. Patients who had a complete antenatal, delivery, and post-partum follow up were included. Their medical records were retrospectively analysed to assess the disease activity at pre-pregnancy/conception, during antenatal, and post-partum period. Presence of flare episodes during pregnancy and puerperium were recorded. The pregnancy outcomes recorded include live birth, foetal loss, prematurity and intra-uterine growth restrictions (IUGR). Univariate and multivariable logistic regression with generalized estimating equations (GEE) analyses were performed to determine the factors associated with disease relapse and the pregnancy outcomes. A total of 120 patients with 196 pregnancies were included, with a live birth rate of 78.6%. Four (2.0%) were diagnosed to have SLE during pregnancy. The flare rate in pregnancy was 40.1% while post-partum 17.4%. Majority of the relapse in pregnancy occurred in haematological system (62.3%) followed by renal (53.2%), musculoskeletal (22.1%), and mucocutaneous (14.3%). In GEE analyses, active disease at conception was the independent predictor of SLE relapse during and after pregnancy, whereas older maternal age and Malay ethnicity were associated with higher flare during post-partum. HCQ use was significantly associated with reduced risk of flare in univariate analysis but it was no longer significant in the GEE analyses. Presence of disease flare in pregnancy was significantly associated with prematurity. In conclusion, pregnancy in SLE need to be planned during quiescent state as pre-pregnant active disease was associated with disease relapse in both during and after pregnancy. Malay patients had an increased risk of post-partum flare but further larger prospective studies are needed to confirm the association between pregnancies in the different ancestral background.
    Matched MeSH terms: Lupus Erythematosus, Systemic/etiology
  2. Molineros JE, Looger LL, Kim K, Okada Y, Terao C, Sun C, et al.
    PLoS Genet, 2019 04;15(4):e1008092.
    PMID: 31022184 DOI: 10.1371/journal.pgen.1008092
    Human leukocyte antigen (HLA) is a key genetic factor conferring risk of systemic lupus erythematosus (SLE), but precise independent localization of HLA effects is extremely challenging. As a result, the contribution of specific HLA alleles and amino-acid residues to the overall risk of SLE and to risk of specific autoantibodies are far from completely understood. Here, we dissected (a) overall SLE association signals across HLA, (b) HLA-peptide interaction, and (c) residue-autoantibody association. Classical alleles, SNPs, and amino-acid residues of eight HLA genes were imputed across 4,915 SLE cases and 13,513 controls from Eastern Asia. We performed association followed by conditional analysis across HLA, assessing both overall SLE risk and risk of autoantibody production. DR15 alleles HLA-DRB1*15:01 (P = 1.4x10-27, odds ratio (OR) = 1.57) and HLA-DQB1*06:02 (P = 7.4x10-23, OR = 1.55) formed the most significant haplotype (OR = 2.33). Conditioned protein-residue signals were stronger than allele signals and mapped predominantly to HLA-DRB1 residue 13 (P = 2.2x10-75) and its proxy position 11 (P = 1.1x10-67), followed by HLA-DRB1-37 (P = 4.5x10-24). After conditioning on HLA-DRB1, novel associations at HLA-A-70 (P = 1.4x10-8), HLA-DPB1-35 (P = 9.0x10-16), HLA-DQB1-37 (P = 2.7x10-14), and HLA-B-9 (P = 6.5x10-15) emerged. Together, these seven residues increased the proportion of explained heritability due to HLA to 2.6%. Risk residues for both overall disease and hallmark autoantibodies (i.e., nRNP: DRB1-11, P = 2.0x10-14; DRB1-13, P = 2.9x10-13; DRB1-30, P = 3.9x10-14) localized to the peptide-binding groove of HLA-DRB1. Enrichment for specific amino-acid characteristics in the peptide-binding groove correlated with overall SLE risk and with autoantibody presence. Risk residues were in primarily negatively charged side-chains, in contrast with rheumatoid arthritis. We identified novel SLE signals in HLA Class I loci (HLA-A, HLA-B), and localized primary Class II signals to five residues in HLA-DRB1, HLA-DPB1, and HLA-DQB1. These findings provide insights about the mechanisms by which the risk residues interact with each other to produce autoantibodies and are involved in SLE pathophysiology.
    Matched MeSH terms: Lupus Erythematosus, Systemic/etiology*
  3. Hasan SI, Mohd Ashari NS, Mohd Daud K, Che Husin CM
    Int J Rheum Dis, 2013 Aug;16(4):430-6.
    PMID: 23992264 DOI: 10.1111/1756-185X.12062
    BACKGROUND: The ethiopathogenesis of increased apoptosis of lymphocytes in systemic lupus erythematosus (SLE) is still incompletely understood but anti-C1q autoantibodies have been shown to induce apoptosis in lymphocytes from healthy donors and certain cell lines.
    AIM: This study was undertaken to investigate the relationship between peripheral lymphocyte apoptosis and serum levels of anti-C1q autoantibodies in SLE patients.
    METHODS: The sera of 124 patients with SLE involving 62 active SLE and 62 inactive SLE, fulfilling America College of Rheumatology (ACR) classification criteria for SLE (1997) were incubated with peripheral blood lymphocytes of healthy donors. The results were compared with 124 sex- and age-matched normal controls. Apoptotic lymphocytes (AL) were detected by flow cytometry using annexin V and propidium iodide binding. Anti-C1q autoantibodies were detected by an enzyme-linked immunoassay kit for all SLE patients.
    RESULTS: Results demonstrated that the percentage of AL in the peripheral blood of active SLE patients was significantly higher (n = 62, 34.95 ± 12.78%) than that of the inactive SLE patients (n = 62, 30.69 ± 10.13%, P = 0.042, 95%CI = 0.16-8.36) and normal controls (n = 124, 27.92 ± 10.22%, P = 0.001, 95%CI = 3.33-10.73). The percentage of AL significantly correlated with serum levels of anti-C1q autoantibodies in the active SLE patients (r = 0.263, P = 0.039) but not in the inactive SLE patients (r = 0.170, P = 0.185).
    CONCLUSION: The results of this study suggest that increased serum levels of anti-C1q autoantibodies are responsible for apoptosis and may play a pathogenic role in SLE patients, especially in active disease.
    KEYWORDS: anti-C1q; apoptosis; flowcytometry; systemic lupus erythematosus
    Study site: Medical outpatient clinic and medical wards, Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia
    Matched MeSH terms: Lupus Erythematosus, Systemic/etiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links