Displaying all 2 publications

  1. Low KL, Idris A, Mohd Yusof N
    Food Chem, 2020 Mar 01;307:125631.
    PMID: 31634761 DOI: 10.1016/j.foodchem.2019.125631
    Lutein available in the current market is derived from marigold petals. However, extensive studies showed that microalgae are rich in lutein content and potentially exploitable for its dietary and other industrial applications. In this study, microwave assisted binary phase solvent extraction method (MABS) was the novel protocol being developed and optimized to achieve maximum lutein recovery from microalgae Scenedesmus sp. biomass. Results showed that 60% potassium hydroxide solution with acetone in the ratio of 0.1 (ml/ml) was the ideal binary phase solvent composition. Empirical model developed using response surface methodology revealed highest lutein content can be recovered through MABS extraction method at 55 °C treatment temperature, 36 min in extraction time, 0.7 (mg/ml) for biomass to solvent ratio, 250 Watt microwave power and 250 rpm stirring speed. This optimized novel protocol had increased the amount of lutein recovered by 130% and shorten the overall extraction time by 3-folds.
    Matched MeSH terms: Lutein/isolation & purification*
  2. Radzali SA, Baharin BS, Othman R, Markom M, Rahman RA
    J Oleo Sci, 2014;63(8):769-77.
    PMID: 25007745
    In recent years, astaxanthin is claimed to have a 10 times higher antioxidant activity than that of other carotenoids such as lutein, zeaxanthin, canthaxanthin, and β-carotene; the antioxidant activity of astaxanthin is 100 times higher than that of α-tocopherol. Penaeus monodon (tiger shrimp) is the largest commercially available shrimp species and its waste is a rich source of carotenoids such as astaxanthin and its esters. The efficient and environment-friendly recovery of astaxanthins was accomplished by using a supercritical fluid extraction (SFE) technique. The effects of different co-solvents and their concentrations on the yield and composition of the extract were investigated. The following co-solvents were studied prior to the optimization of the SFE technique: ethanol, water, methanol, 50% (v/v) ethanol in water, 50% (v/v) methanol in water, 70% (v/v) ethanol in water, and 70% (v/v) methanol in water. The ethanol extract produced the highest carotenoid yield (84.02 ± 0.8 μg/g) dry weight (DW) with 97.1% recovery. The ethanol extract also produced the highest amount of the extracted astaxanthin complex (58.03 ± 0.1 μg/g DW) and the free astaxanthin content (12.25 ± 0.9 μg/g DW) in the extract. Lutein and β-carotene were the other carotenoids identified. Therefore, ethanol was chosen for further optimization studies.
    Matched MeSH terms: Lutein/isolation & purification
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links