Free radical scavenging activity of 21 tropical plant extracts was evaluated using 1,1-diphenyl-2-picrylhydrazyl assay (DPPH). Total phenolic compounds and flavonoids were determined using Folin-Ciocalteu and HPLC, respectively. Results of the study revealed that all the plants tested exhibited excellent antioxidant activity with IC(50) in the range of 21.3 to 89.6 microg/mL. The most potent activity was demonstrated by Cosmos caudatus (21.3 microg/mL) and Piper betle (23.0 microg/mL) that are not significantly different than that of -tocopherol or BHA. L. inermis extract was found to consist of the highest concentration of phenolics, catechin, epicatechin, and naringenin. High content of quercetin, myricetin, and kaempferol were identified in Vitex negundo, Centella asiatica, and Sesbania grandiflora extracts, respectively. Luteolin and apigenin, on the other hand, were found in Premna cordifolia and Kaempferia galanga extracts. Strong correlation (R = 0.8613) between total phenolic compounds and total flavonoids (R = 0.8430) and that of antioxidant activity of the extracts were observed. The study revealed that phenolic, in particular flavonoids, may be the main contributors to the antioxidant activity exhibited by the plants.
Luteolin and apigenin derivatives present in oil palm (Elaeis guineensis) leaves (OPL) are reported to possess excellent antioxidant properties relating to numerous health benefits. To meet the global demand for flavonoids, OPL, which is plentifully generated as an agricultural by-product from oil palm plantations, can be further exploited as a new source of natural antioxidant compounds. However, to produce a standardized herbal preparation, validation of the quantification method for these compounds is required. Therefore, in this investigation, we developed and validated an improved and rapid analytical method, ultra-high-performance liquid chromatography equipped with ultraviolet/photodiode array (UHPLC-UV/PDA) for the quantification of 12 luteolin and apigenin derivatives, particularly focusing on flavonoid isomeric pairs: orientin/isoorientin and vitexin/isovitexin, present in various OPL extracts. Several validation parameters were assessed, resulting in the UHPLC-UV/PDA technique offering good specificity, linearity, accuracy, precision, and robustness, where the values were within acceptable limits. Subsequently, the validated method was employed to quantify luteolin and apigenin derivatives from OPL subjected to different drying treatments and extraction with various solvent systems, giving total luteolin (TLC) and apigenin content (TAC) in the range of 2.04-56.30 and 1.84-160.38 µg/mg extract, respectively. Additionally, partial least square (PLS) analysis disclosed the combination of freeze dry-aqueous methanol yielded OPL extracts with high TLC and TAC, which are strongly correlated with antioxidant activity. Therefore, we provide the first validation report of the UHPLC-UV/PDA method for quantification of luteolin and apigenin derivatives present in various OPL extracts, suggesting that this approach could be employed in standardized herbal preparations by adopting orientin, isoorientin, vitexin, and isovitexin as chemical markers.