Displaying all 3 publications

Abstract:
Sort:
  1. Yeo SK, Ong JS, Liong MT
    Appl Biochem Biotechnol, 2014 Oct;174(4):1496-1509.
    PMID: 25119552 DOI: 10.1007/s12010-014-1141-6
    This study aimed to evaluate the effects of electroporation on growth, bioconversion of isoflavones, and probiotic properties of parent organisms and subsequent passages of Bifidobacterium longum FTDC 8643. Electroporation with the strength of electric field at 7.5 kV cm(-1) for 3.5 ms was applied on B. longum FTDC 8643. The viability of B. longum FTDC 8643 increased significantly upon treatment with electroporation. Such treatment also enhanced the intracellular and extracellular β-glucosidase activity, leading to enhanced production of bioactive isoflavone aglycones in mannitol-soymilk (P 
    Matched MeSH terms: Mannitol/pharmacology
  2. Sipen P, Anthony P, Davey MR
    Cryo Letters, 2011 May-Jun;32(3):197-205.
    PMID: 21766149
    The effect of preculture with different sugars and mannitol on cryopreservation of scalps of the banana (Musa) cvs. Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak was investigated. Scalps (0.3 square cm) were precultured on semi-solid MS-based medium, containing 0.4 or 0.5 M sucrose, glucose, fructose, trehalose or mannitol, for 14 days under a 16 h light and 8 h dark photoperiod prior to rapid cooling and storage in liquid nitrogen. Explants were rewarmed rapidly in a water bath at 40 degree C for 1 min, followed by recovery on two layers of sterile filter paper overlaying 25 ml aliquots of semi-solid MS-based medium with 5 mg per liter benzylaminopurine, 0.2 mg per liter indole acetic acid and 10 mg per liter ascorbic acid (PM8 medium) for 2 days in the dark. Subsequently, scalps were transferred onto 25 ml aliquots of semi-solid PM8 medium and incubated in the dark for 1 week prior to incubation in the light. Shoot regeneration from 5 - 48 percent of cryopreserved scalps of all the banana cvs., was observed only following preculture with 0.4 or 0.5 M glucose or fructose, and with 0.4 M trehalose for the cvs. Pisang Berangan and Pisang Awak. Preculture with 0.4 M glucose resulted in maximum shoot regeneration of cryopreserved scalps of 10 percent, 13 percent, 42 percent and 48 percent for the cvs. Pisang Mas, Pisang Nangka, Pisang Berangan and Pisang Awak, respectively. Concentrations of 0.5 M trehalose, or 0.4 and 0.5 M sucrose or mannitol were extremely toxic to scalps of all the cvs. investigated.
    Matched MeSH terms: Mannitol/pharmacology
  3. Loo CY, Lee WH, Lauretani G, Scalia S, Cipolla D, Traini D, et al.
    Pharm Res, 2018 Feb 07;35(3):50.
    PMID: 29417313 DOI: 10.1007/s11095-018-2350-4
    PURPOSE: The failure of chronic therapy with antibiotics to clear persistent respiratory infection is the key morbidity and mortality factor for patients with chronic lung diseases, primarily due to the presence of biofilm in the lungs. It is hypothesised that carbon sources, such as mannitol, could stimulate the metabolic activity of persister cells within biofilms and restore their susceptibility to antibiotics. The aims of the current study are to: (1) establish a representative in vitro model of Pseudomonas aeruginosa biofilm lung infection, and (2) investigate the effects of nebulised mannitol on antibiotic efficacy, focusing on ciprofloxacin, in the eradication of biofilm.

    METHOD: Air interface biofilm was cultured onto Snapwell inserts incorporated into a modified pharmacopeia deposition apparatus, the Anderson Cascade Impactor (ACI). Three different formulations including mannitol only, ciprofloxacin only and combined ciprofloxacin and mannitol were nebulised onto the P. aeruginosa biofilm using the modified ACI. Antibacterial effectiveness was evaluated using colony-forming units counts, biofilm penetration and scanning electron microscopy.

    RESULTS: Nebulised mannitol promotes the dispersion of bacteria from the biofilm and demonstrated a synergistic enhancement of the antibacterial efficacy of ciprofloxacin compared to delivery of antibiotic alone.

    CONCLUSIONS: The combination of ciprofloxacin and mannitol may provide an important new strategy to improve antibiotic therapy for the treatment of chronic lung infections. Furthermore, the development of a representative lung model of bacterial biofilm could potentially be used as a platform for future new antimicrobial pre-clinical screening.

    Matched MeSH terms: Mannitol/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links